The European Physical Journal Special Topics

, Volume 157, Issue 1, pp 93–109 | Cite as

A model for rolling swarms of locusts

Abstract.

We construct an individual-based kinematic model of rolling migratory locust swarms. The model incorporates social interactions, gravity, wind, and the effect of the impenetrable boundary formed by the ground. We study the model using numerical simulations and tools from statistical mechanics, namely the notion of H-stability. For a free-space swarm (no wind and gravity), as the number of locusts increases, the group approaches a crystalline lattice of fixed density if it is H-stable, and in contrast becomes ever denser if it is catastrophic. Numerical simulations suggest that whether or not a swarm rolls depends on the statistical mechanical properties of the corresponding free-space swarm. For a swarm that is H-stable in free space, gravity causes the group to land and form a crystalline lattice. Wind, in turn, smears the swarm out along the ground until all individuals are stationary. In contrast, for a swarm that is catastrophic in free space, gravity causes the group to land and form a bubble-like shape. In the presence of wind, the swarm migrates with a rolling motion similar to natural locust swarms. The rolling structure is similar to that observed by biologists, and includes a takeoff zone, a landing zone, and a stationary zone where grounded locusts can rest and feed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Tilman, P. Kareiva (eds.), Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (Princeton University Press, Princeton, NJ, 1998) Google Scholar
  2. A. Okubo, D. Grünbaum, L. Edelstein-Keshet, in Diffusion and Ecological Problems, edited by A. Okubo, S.A. Levin (Springer, New York, 2001), Vol. 14, Interdisciplinary Applied Mathematics: Mathematical Biology, 2nd edn., Chap. 7, pp. 197–237 Google Scholar
  3. B. Uvarov, Grasshoppers and Locusts, Vol. 2 (Cambridge University Press, London, UK, 1977) Google Scholar
  4. S.R. Joffe, Desert Locust Technical Series AGP/DL/TS/27, United Nations Food and Agriculture Organization (1997) Google Scholar
  5. M. Collett, E. Despland, S.J. Simpson, D.C. Krakauer, Proc. Natl. Acad. Sci. 95, 13052 (1998) Google Scholar
  6. S.J. Simpson, E. Despland, B.F. Hägele, T. Dodgson, Proc. Natl. Acad. Sci. 98, 3895 (2001) Google Scholar
  7. J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006) Google Scholar
  8. J.S. Kennedy, Proc. Roy. Soc. Lond. B 235, 163 (1951) Google Scholar
  9. F.O. Albrecht, Polymorphisme Phasaire et Biologie des Acridiens Migrateurs, Les Grands Problèmes de la Biologie (Masson, Paris, 1967) Google Scholar
  10. R.C. Rainey, Migration and Meteorology: Flight Behavior and the Atmospheric Environment of Locusts and other Migrant Pests, Oxford Science Publications (Clarendon Press, Oxford, 1989) Google Scholar
  11. L. Edelstein-Keshet, J. Watmough, D. Grünbaum, J. Math. Biol. 36, 515 (1998) Google Scholar
  12. A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros, J. Math. Biol. 47, 353 (2003) Google Scholar
  13. D. Ruelle, Statistical Mechanics: Rigorous Results, Mathematical Physics Monograph Series (W.A. Benjamin, New York, 1969) Google Scholar
  14. M.R. D'Orsogna, Y.L. Chuang, A.L. Bertozzi, L. Chayes, Phys. Rev. Lett. 96, 104302.1 (2006) Google Scholar
  15. S. Sakai, Biophys. 13, 82 (1973) Google Scholar
  16. R. Suzuki, S. Sakai, Biophys. 13, 281 (1973) Google Scholar
  17. A. Okubo, W. Sakamoto, T. Inagaki, T. Kuroki, Bull. Jpn. Soc. Sci. Fish 9, 1369 (1977) Google Scholar
  18. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995) Google Scholar
  19. G. Grégoire, H. Chaté, Y. Tu, Phys. Rev. E 64, 011902.1 (2001) Google Scholar
  20. H. Levine, W.J. Rappel, I. Cohen, Phys. Rev. E 63, 017101.1 (2001) Google Scholar
  21. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. E 64, 021110.1 (2001) Google Scholar
  22. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002) Google Scholar
  23. U. Erdmann, W. Ebeling, V.S. Anishchenko, Phys. Rev. E 65, 061106.1 (2002) Google Scholar
  24. M. Aldana, C. Huepe, J. Stat. Phys. 112, 135 (2003) Google Scholar
  25. U. Erdmann, W. Ebeling, Fluct. Noise Lett. 3, L145 (2003) Google Scholar
  26. G. Grégoire, H. Chaté, Y. Tu, Physica D 181, 157 (2003) Google Scholar
  27. J.K. Parrish, S.V. Viscido, D. Grünbaum, Biol. Bull. 202, 296 (2003) Google Scholar
  28. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702.1 (2004) Google Scholar
  29. K. Kawasaki, Math. Sci. 16, 47 (1978) Google Scholar
  30. A. Okubo, Diffusion and Ecological Problems (Springer, New York, 1980) Google Scholar
  31. M. Mimura, M. Yamaguti, Adv. Biophys. 15, 19 (1982) Google Scholar
  32. R.D. Passo, P. Demottoni, J. Math. Biol. 20, 103 (1984) Google Scholar
  33. T. Ikeda, Proc. Jpn. Acad. A 60, 46 (1984) Google Scholar
  34. W. Alt, Nonlinear Anal. 9, 811 (1985) Google Scholar
  35. T. Ikeda, J. Appl. Math. Jpn. 2, 111 (1985) Google Scholar
  36. J. Satsuma, M. Mimura, J. Phys. Soc. Jpn. 54, 894 (1985) Google Scholar
  37. T. Ikeda, T. Nagai, J. Appl. Math. Jpn. 4, 73 (1987) Google Scholar
  38. Y. Hosono, M. Mimura, SIAM J. Math. Anal. 20, 845 (1989) Google Scholar
  39. D. Grünbaum, A. Okubo, in Frontiers in Mathematical Biology, edited by S.A. Levin, Vol. 100, Lecture Notes in Biomathematics (Springer-Verlag, 1994), pp. 296–325 Google Scholar
  40. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998) Google Scholar
  41. G. Flierl, D. Grünbaum, S. Levin, D. Olson, J. Theor. Biol. 196, 397 (1999) Google Scholar
  42. A. Mogilner, L. Edelstein-Keshet, J. Math. Bio. 38, 534 (1999) Google Scholar
  43. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 028181.1 (2002) Google Scholar
  44. R.A. Simha, S. Ramaswamy, Physica A 306, 262 (2002) Google Scholar
  45. P.C. Bressloff, SIAM J. Appl. Math. 64, 1668 (2004) Google Scholar
  46. C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004) Google Scholar
  47. Y. Tyutyunov, I. Senina, R. Arditi, Am. Nat. 164, 722 (2004) Google Scholar
  48. C.M. Topaz, A.L. Bertozzi, M.A. Lewis, Bull. Math. Biol. 68, 1601 (2006) Google Scholar
  49. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69, 1537 (2007) Google Scholar
  50. Y.L. Chuang, M.R. D'Orsogna, D. Marthaler, A.L. Bertozzi, L.S. Chayes (2007) (preprint) Google Scholar
  51. W. Ebeling, U. Erdmann, Complexity 8, 23 (2003) Google Scholar
  52. N. Komin, U. Erdmann, L. Schimansky-Geier, Fluct. Noise Lett. 4, L151 (2004) Google Scholar
  53. U. Erdmann, W. Ebeling, A.S. Mikhailov, Phys. Rev. E 71, 051904.1 (2005) Google Scholar
  54. L. Schimansky-Geier, W. Ebeling, U. Erdmann, Acta Phys. Polon. B 36, 1757 (2005) Google Scholar
  55. J.A. Beecham, K.D. Farnsworth, J. Theor. Biol. 198, 533 (1999) Google Scholar
  56. A.J. Bernoff, C.M. Topaz (2007) (preprint) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • C. M. Topaz
    • 1
  • A. J. Bernoff
    • 2
  • S. Logan
    • 3
  • W. Toolson
    • 2
  1. 1.Macalester College, Dept. of Mathematics and Computer ScienceSt. PaulUSA
  2. 2.Harvey Mudd College, Dept. of MathematicsClaremontUSA
  3. 3.Harvey Mudd College, Dept. of EngineeringClaremontUSA

Personalised recommendations