Beyond the Keller-Segel model

Microscopic modelling of bacterial colonies
  • P. RomanczukEmail author
  • U. Erdmann
  • H. Engel
  • L. Schimansky-Geier


Complex spatio-temporal patterns of cell clusters were observed in colonies of chemotactic bacteria such as Escherichia coli or Sallmonella typhimurium. The production of a potent chemoattractant by the bacteria themselves as a reaction to certain nutrients is the essential factor for this pattern formation. Additional collective dynamics, such as collective translation and rotation of bacterial clusters were reported from experiments on bacterial colonies. Motivated by this observations we suggest a simple model for the description of bacterial colonies using the concept of active Brownian particles. Individual based models represent an interesting alternative to the usually employed mean field chemotaxis-diffusion equations (Keller-Segel model) as they allow us to study the macroscopic pattern formation of the colony, the collective dynamics of bacterial ensembles, as well as the microscopic dynamics of individual cells. In this paper we derive microscopic model equations from basic assumptions about bacterial dynamics, discuss the parameter choice by comparison with biological data and analyse the macroscopic and microscopic dynamics of the system. Finally we extend the model by a velocity-alignment (swarming) interaction which leads to novel collective dynamics in the system.


European Physical Journal Special Topic Bacterial Coloni Microscopic Dynamic Relative Occupation Collective Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.F. Keller, L.A. Segel, J. Theor. Biol. 30, 225 (1971) Google Scholar
  2. E.F. Keller, L.A. Segel, J. Theor. Biol. 30, 235 (1971) Google Scholar
  3. R. Tyson, S.R. Lubkin, J.D. Murray, J. Math. Biol. 38, 359 (1999) Google Scholar
  4. R. Tyson, S.R. Lubkin, J.D Murray, Proc. Royal Soc. London B 266, 299 (1999) Google Scholar
  5. M. Matsushita, J. Wakita, H. Itoh, K. Watanabe, T. Arai, T. Matsuyama, H. Sakaguchi, M. Mimura, Physica A 274, 190 (1999) Google Scholar
  6. Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob, Phys. Rev. E 59, 7025 (1999) Google Scholar
  7. E.O. Budrene, H.C. Berg, Nature 349, 630 (1991) Google Scholar
  8. E.O. Budrene, H.C. Berg, Nature 376, 49 (1995) Google Scholar
  9. A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Phys. Rev. E 54, 1791 (1996) Google Scholar
  10. M. Eisenbach, Chemotaxis (World Scientific Publishing, 2004) Google Scholar
  11. W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17 (1999) Google Scholar
  12. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B 15, 105 (2000) Google Scholar
  13. U. Erdmann, W. Ebeling, V.S. Anishchenko, Phys. Rev. E 65, 061106 (2002) Google Scholar
  14. W. Ebeling, Physica A 314, 92 (2002) Google Scholar
  15. B.A. Mello, L. Shaw, Y. Tu, Biophys. J. 87, 1578 (2004) Google Scholar
  16. S.-H. Kim, W. Wang, K.K. Kim, Proc. Nation. Acad. Sci. USA 99, 11611 (2002) Google Scholar
  17. V. Sourjik, H.C. Berg, Proc. Nation. Acad. Sci. USA 99, 123 (2002) Google Scholar
  18. E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000) Google Scholar
  19. J.D. Murray, Mathematical Biology I, 3 edn. (Springer, Berlin, 2004) Google Scholar
  20. F. Schweitzer, L. Schimansky-Geier, Physica A 206, 359 (1994) Google Scholar
  21. A.S. Mikhailov, D. Meinköhn, Self-motion in physico-chemical systems far from equilibrium, Vol. 484, Lecture Notes in Physics (Springer-Verlag, Berlin, 1997), p. 334 Google Scholar
  22. M. Loferer-Krösbacher, J. Klima, R. Psenner, Appl. Envir. Microbiol. 64, 688 (1997) Google Scholar
  23. A. Czirók, T. Vicsek, Physica A 281, 17 (2000) Google Scholar
  24. M.R. D'Orsogna, Y.L. Chuang, A.L. Bertozzi, L.S. Chayes, Phys. Rev. Lett. 96, 104302 (2006) Google Scholar
  25. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Eur. Phys. J. B, 15, 105 (2000) Google Scholar
  26. L. Schimansky-Geier, W. Ebeling, U. Erdmann, Acta Phys. Polon. 36, 1757 (2005) Google Scholar
  27. W.Q. Zhu, M. Lin Deng, Phys. A: Stat. Mech. Appl. 354, 127 (2005) Google Scholar
  28. U. Erdmann, W. Ebeling, Fluc. Noise Lett. 3, 145 (2003) Google Scholar
  29. T.J. Pedley, J.O. Kessler, Ann. Rev. Fluid Mech. 24, 313 (1992) Google Scholar
  30. C.M. Pooley, G.P. Alexander, J.M Yeomans, Swimming with a friend at low reynolds number, 0705.3612 (2007) Google Scholar
  31. Z. Csahók, A. Czirók, Physica A 243, 304 (1997) Google Scholar
  32. P. Romanczuk, U. Erdmann, PRL (2007) (submitted) Google Scholar
  33. G.V. Soni, B.M. Jaffar Ali, Y. Hatwalne, G.V. Shivashankar, Biophys. J. 84, 2634 (2003) Google Scholar
  34. F. Peruani, A. Deutsch, M. Bar, Phys. Rev. E (Stat. Nonl. Soft Matter Phys.) 74, 030904–4 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • P. Romanczuk
    • 1
    Email author
  • U. Erdmann
    • 2
  • H. Engel
    • 3
  • L. Schimansky-Geier
    • 1
  1. 1.Institute of Physics, Humboldt University BerlinBerlinGermany
  2. 2.Helmholtz Association, Anna-Louisa-Karsch-Str. 2BerlinGermany
  3. 3.Institute of Theoretical Physics, Technical University BerlinBerlinGermany

Personalised recommendations