Advertisement

The European Physical Journal Special Topics

, Volume 155, Issue 1, pp 167–175 | Cite as

The origin of thermal hadron production

Article

Abstract.

Multihadron production in high energy collisions, from e+e- annihilation to heavy ion interactions, shows remarkable thermal behaviour, specified by a universal “Hagedorn” temperature. We argue that this hadronic radiation is formed by tunneling through the event horizon of colour confinement, i.e., that it is the QCD counterpart of Hawking-Unruh radiation from black holes. It is shown to be emitted at a universal temperature TH ≃ (σ/2 π)1/2, where σ denotes the string tension. Since the event horizon does not allow information transfer, the radiation is thermal “at birth”.

Keywords

Black Hole Pair Production Event Horizon European Physical Journal Special Topic Quark Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Castorina, D. Kharzeev, H. Satz, Europ. Phys. J. C 52, 187 (2007) 187 Google Scholar
  2. E. Recami, P. Castorina, Lett. Nuovo Cim. 15, 347 (1976) Google Scholar
  3. A. Salam, J. Strathdee, Phys. Rev. D 18 (1978) Google Scholar
  4. A.F. Grillo, Y. Srivastava, Phys. Lett. B 85, 377 (1979) Google Scholar
  5. S.W. Hawking, Comm. Math. Phys. 43, 199 (1975) Google Scholar
  6. R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965); Nuovo Cim. A 56, 1027 (1968) Google Scholar
  7. F. Becattini, Z. Phys. C 69, 485 (1996) (e+e-); F. Becattini, U. Heinz, Z. Phys. C 76, 268 (1997) (\(pp/p\bar p\)); J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993) (heavy ions); F. Becattini et al., Phys. Rev. C 64, 024901 (2001) (heavy ions); P. Braun-Munziger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2003) (heavy ions) Google Scholar
  8. See e.g., Li Zhi Fang, R. Ruffini, Basic Concepts in Relativistic Astrophysics (World Scientific, Singapore, 1983) Google Scholar
  9. W.G. Unruh, Phys. Rev. D 14, 870 (1976) Google Scholar
  10. For a clear discussion and references to the original solutions by M. Born (1909) and A. Sommerfeld (1910), edited by W. Pauli, Relativitätstheorie, in Enzyklopädie der mathematischen Wissenschaften (Teubner-Verlag, Leipzig, 1921); English version Theory of Relativity (Pergamon Press, 1958) Google Scholar
  11. T.D. Lee, Nucl. Phys. B 264, 437 (1986) Google Scholar
  12. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000) Google Scholar
  13. M. Novello et al., Phys. Rev. D 61, 045001 (2000) Google Scholar
  14. S. Barshay, W. Troost, Phys. Lett. 73B, 437 (1978) Google Scholar
  15. A. Hosoya, Progr. Theoret. Phys. 61, 280 (1979) Google Scholar
  16. M. Horibe, Progr. Theoret. Phys. 61, 661 (1979) Google Scholar
  17. J. Schwinger, Phys. Rev. 82, 664 (1951) Google Scholar
  18. J.D. Bjorken, Lect. Notes Phys. (Springer) 56, 93 (1976) Google Scholar
  19. A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979) Google Scholar
  20. M. Lüscher, G. Münster, P. Weisz, Nucl. Phys. B 180, 1 (1981) Google Scholar
  21. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005); D. Kharzeev [hep-ph/0511354] Google Scholar
  22. D. Kharzeev, E. Levin, K. Tuchin [hep-ph/0602063] Google Scholar
  23. J. Dias de Deus, C. Pajares [hep-ph/0605148] Google Scholar
  24. R. Hagedorn, Thermodynamics of Strong Interactions, CERN 71-12 (1971); R. Stock, Phys. Lett. B 456, 277 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • H. Satz
    • 1
  1. 1.Fakultät für Physik, Universität BielefeldBielefeldGermany

Personalised recommendations