Advertisement

Pion production in dAu collisions at RHIC energy

  • P. LévaiEmail author
  • G. Papp
  • G. G. Barnaföldi
  • G. Fai
Article

Abstract.

We present our results on neutral pion (π0) production in pp and dAu collisions at RHIC energy. Pion spectra are calculated in a next-to-leading order (NLO) perturbative QCD-based model. The model includes the transverse component of the initial parton distribution (“intrinsic kT”). We compare our results to the available experimental data from RHIC, and fit the data with high precision. The calculation tuned this way is repeated for the dAu collision, and used to investigate the interplay of shadowing and multiple scattering at RHIC. The centrality dependence of the nuclear modification factor shows a measurable difference between different shadowing parameterizations.

Keywords

Transverse Momentum European Physical Journal Special Topic Quark Matter Pion Production Leading Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Bass, J. Zimányi et al., Nucl. Phys. A 661, 205 (1999) Google Scholar
  2. S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 91, 072303 (2003) Google Scholar
  3. S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 98, 172302 (2003) Google Scholar
  4. S.S. Adler et al., PHENIX Coll., Phys. Rev. C 74, 024904 (2006) Google Scholar
  5. S.S. Adler et al., PHENIX Coll. [arXiv: 0708.2416] [nucl-ex] Google Scholar
  6. G. David et al., PHENIX Coll., Nucl. Phys. A 698, 227 (2002); K. Adcox et al., PHENIX Coll., Phys. Rev. Lett. 88, 022301 (2002); K. Adcox et al., PHENIX Coll., Phys. Lett. B 561, 82 (2003) Google Scholar
  7. S. Mioduszewski et al., PHENIX Coll., Nucl. Phys. A 715, 453C (2003); D. d'Enterria et al., PHENIX Coll., Nucl. Phys. A 715, 749C (2003) Google Scholar
  8. C. Adler et al., STAR Coll., Phys. Rev. Lett. 89, 202301 (2002); J. Adams et al., STAR Coll., Phys. Rev. Lett. 91, 172302 (2003) Google Scholar
  9. X.N. Wang, Phys. Rev. C 61, 064910 (2001) Google Scholar
  10. G. Papp, G.G. Barnaföldi, G. Fai, P. Lévai, Y. Zhang, Nucl. Phys. A 698, 627 (2002) Google Scholar
  11. Y. Zhang, G. Fai, G. Papp, G.G. Barnaföldi, P. Lévai, Phys. Rev. C 65, 034903 (2002) Google Scholar
  12. J.L. Klay et al., STAR Coll., Nucl. Phys. A 715, 733C (2003); G.J. Kunde et al., STAR Coll., Nucl. Phys. A 715, 189C (2003) Google Scholar
  13. M. Gyulassy, M. Plümer, Phys. Lett. B 243, 432 (1990); M. Gyulassy, M. Plümer, M.H. Thoma, X.-N. Wang, Nucl. Phys. A 538, 37C (1992) Google Scholar
  14. X.-N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992) Google Scholar
  15. M. Gyulassy, P. Lévai, I. Vitev, Phys. Rev. Lett. 85, 5535 (2000); Nucl. Phys. B 571, 197 (2000); Nucl. Phys. B 594, 371 (2001) Google Scholar
  16. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigné, D. Schiff, Nucl. Phys. B 483, 291 (1997); Nucl. Phys. B 484, 265 (1997) R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000) Google Scholar
  17. B.G. Zakharov, JETP Lett. 70, 176 (1999); JETP Lett. 73, 49 (2001); JETP Lett. 80, 67 (2004); JETP Lett. 80, 617 (2004) Google Scholar
  18. U.A. Wiedemann, Nucl. Phys. A 690, 731 (2001) Google Scholar
  19. M. Gyulassy, P. Lévai, I. Vitev, Phys. Lett. B 538, 282 (2002) Google Scholar
  20. P. Lévai, G. Papp, G. Fai, M. Gyulassy, G.G. Barnaföldi, I. Vitev, Y. Zhang, Nucl. Phys. A 698, 631 (2002) Google Scholar
  21. X.N. Wang, Nucl. Phys. A 698, 296 (2002) Google Scholar
  22. X.N. Wang, Phys. Lett. B 595, 165 (2004) Google Scholar
  23. G.G. Barnaföldi, P. Lévai, G. Papp, G. Fai, M. Gyulassy, Eur. Phys. J. C 33, S609 (2004) Google Scholar
  24. S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 91, 072303 (2003) Google Scholar
  25. B.B. Back et al., PHOBOS Coll., Phys. Rev. Lett. 91, 072302 (2003) Google Scholar
  26. J. Adams et al., STAR Coll., Phys. Rev. Lett. 91, 072304 (2003) Google Scholar
  27. I. Vitev, Phys. Lett. B 562, 36 (2003) Google Scholar
  28. G. Papp, G.G. Barnaföldi, P. Lévai, G. Fai [hep-ph/0212249] Google Scholar
  29. D. Kharzeev, Yu.V. Kovchegov, K. Tuchin Phys. Rev. D 68, 094013 (2003); Phys. Lett. B 599, 23 (2004) Google Scholar
  30. E. Iancu, R. Itakura, D.N. Triantafyllopoulos, Nucl. Phys. A 742, 182 (2004) Google Scholar
  31. F. Aversa, P. Chiappetta, M. Greco, J.Ph. Guillet, Nucl. Phys. B 327, 105 (1989) Google Scholar
  32. P. Aurenche, M. Fontannaz, J.Ph. Guillet, B. Kniehl, E. Pilon, M. Werlen, Eur. Phys. J. C 9, 107 (1999); P. Aurenche, M. Fontannaz, J.Ph. Guillet, B. Kniehl, M. Werlen, Eur. Phys. J. C 13, 347 (2001) Google Scholar
  33. C.Y. Wong, H. Wang, Phys. Rev. C 58, 376 (1998) Google Scholar
  34. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995) Google Scholar
  35. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23, 73 (2002) Google Scholar
  36. B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 597, 337 (2001) Google Scholar
  37. H. Torii et al., PHENIX Coll., Nucl. Phys. A 715, 753C (2003); S.S. Adler et al., PHENIX Coll., Phys. Rev. Lett. 91, 241803 (2003) Google Scholar
  38. In the NLO calculation displayed in Fig. 2c of ref. PHENpi0200pp, the scale choice Q=QR=QF=pT appears to be a good general fit within error bars; however, concentrating on the central values at high pT would prefer scales like Q=QR=QF=(5/3)pT, leading to a factor 2 underestimation of the data at low pT, just like in our calculation Google Scholar
  39. A.L.S. Angelis et al., CCOR Coll., Phys. Lett. B 97, 163 (1980) Google Scholar
  40. C. Adler et al., STAR Coll., Phys. Rev. Lett. 90, 082302 (2003); D. Hardtke et al., STAR Coll., Nucl. Phys. A 715, 801C (2003) Google Scholar
  41. M. Chiu et al., PHENIX Coll., Nucl. Phys. A 715, 761C (2003); N.N. Ajitanand et al., PHENIX Coll., Nucl. Phys. A 715, 765C (2003) Google Scholar
  42. M. Gyulassy, P. Lévai, I. Vitev, Phys. Rev. D 66, 014005 (2002) Google Scholar
  43. A. Gawron, J. Kwiecinski, W. Broniowski, Phys. Rev. D 68, 054001 (2003) Google Scholar
  44. P. Lévai, G. Fai, G. Papp, Phys. Lett. B 634, 383 (2006); G. Fai, P. Lévai, G. Papp, Nucl. Phys. A 774, 557 (2006); Nucl. Phys. A 783, 535 (2007) Google Scholar
  45. S.S. Adler et al., Phys. Rev. D 74, 072002 (2006) Google Scholar
  46. A. Accardi, Eur. Phys. J. C 43, 121 (2005) Google Scholar
  47. S.J. Li, X.N. Wang, Phys. Lett. B 527, 85 (2002) Google Scholar
  48. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999) Google Scholar
  49. M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D 64, 034003 (2001); M. Hirai, S. Kumano, T.H. Nagai, Phys. Rev. C 70, 044905 (2004) Google Scholar
  50. L. Frankfurt, V. Guzey, M. McDermott, M. Strikman, JHEP 02, 027 (2002) Google Scholar
  51. S.R. Klein, R. Vogt, Phys. Rev. Lett. 91, 142301 (2004); R. Vogt [hep-ph/0405060] Google Scholar
  52. G.G. Barnaföldi, P. Lévai, G. Papp, G. Fai, Y. Zhang [nucl-th/0212111] Google Scholar
  53. K. Adcox et al., PHENIX Coll., Phys. Rev. Lett. 88, 242301 (2002); T. Chujo et al., PHENIX Coll., Nucl. Phys. A 715, 151C (2003); T. Sakaguchi et al., PHENIX Coll., Nucl. Phys. A 715, 757C (2003); T. Chujo et al., PHENIX Coll., J. Phys. G 34, S893 (2007) Google Scholar
  54. X. Zhang, G. Fai, P. Lévai, Phys. Rev. Lett. 89, 272301 (2002) Google Scholar
  55. R.C. Hwa, C.B. Yang, Phys. Rev. C 67, 034902 (2003) Google Scholar
  56. V. Greco, C.M. Ko, P. Lévai, Phys. Rev. Lett. 90, 202302 (2003); Phys. Rev. C 68, 034904 (2003) Google Scholar
  57. R.J. Fries, B. Müller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003); Phys. Rev. C 68, 044902 (2003) Google Scholar
  58. B.A. Cole, G.G. Barnaföldi, P. Lévai, G. Papp, G. Fai [hep-ph/0702101] Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • P. Lévai
    • 1
    • 2
    Email author
  • G. Papp
    • 3
  • G. G. Barnaföldi
    • 1
    • 4
  • G. Fai
    • 4
  1. 1.RMKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  2. 2.Department of PhysicsColumbia UniversityNew YorkUSA
  3. 3.Department for Theoretical PhysicsEötvös UniversityBudapestHungary
  4. 4.Center for Nuclear Research, Department of PhysicsKent State UniversityKentUSA

Personalised recommendations