Jozsó's Legacy: Chemical and kinetic freeze-out in heavy-ion collisions

  • U. HeinzEmail author
  • G. Kestin


We review J. Zimányi's key contributions to the theoretical understanding of dynamical freeze-out in nuclear collisions and their subsequent applications to ultra-relativistic heavy-ion collisions, leading to the discovery of a freeze-out hierarchy where chemical freeze-out of hadron yields precedes the thermal decoupling of their momentum spectra. Following Zimányi's lines of reasoning we show that kinetic freeze-out necessarily leads to a dependence of the corresponding freeze-out temperature on collision centrality. This centrality dependence can be predicted within hydrodynamic models, and for Au+Au collisions at RHIC this prediction is shown to reproduce the experimentally observed centrality dependence of the thermal decoupling temperature, extracted from hadron momentum spectra. The fact that no such centrality dependence is observed for the chemical decoupling temperature, extracted from the hadron yields measured in these collisions, excludes a similar kinetic interpretation of the chemical decoupling process. We argue that the chemical decoupling data from Au+Au collisions at RHIC can only be consistently understood if the chemical freeze-out process is driven by a phase transition, and that the measured chemical decoupling temperature therefore measures the critical temperature of the quark-hadron phase transition. We propose additional experiments to further test this interpretation.


European Physical Journal Special Topic Quark Matter Hadron Yield Impact Parameter Dependence Steep Temperature Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.P. Bondorf, S.I.A. Garpman, J. Zimányi, Nucl. Phys. A 296, 320 (1978) Google Scholar
  2. K.S. Lee, M.J. Rhoades-Brown, U. Heinz, Phys. Lett. B 174, 123 (1986) Google Scholar
  3. B. Lukácz, J. Zimányi, N.L. Balázs, Phys. Lett. B 183, 27 (1987) Google Scholar
  4. C. Greiner, P. Koch, H. Stöcker, Phys. Rev. Lett. 58, 1825 (1987) Google Scholar
  5. U. Heinz, K.S. Lee, M. Rhoades-Brown, Mod. Phys. Lett. A 2, 153 (1987) Google Scholar
  6. J. Zimányi, (1987) (private communication) Google Scholar
  7. S. Nagamiya, Phys. Rev. Lett. 49, 1383 (1982) Google Scholar
  8. U. Heinz, K.S. Lee, M.J. Rhoades-Brown, Phys. Rev. Lett. 58, 2292 (1987) Google Scholar
  9. E. Schnedermann, U. Heinz, Phys. Rev. C 47, 1738 (1993); Phys. Rev. C 50, 1675 (1994); E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993) Google Scholar
  10. U. Heinz, Nucl. Phys. A 566, 205C (1994); and in Hot Hadronic Matter: Theory and Experiment, edited by J. Lettessier, H.H. Gutbrod, J. Rafelski, NATO Advanced Study Institute Series B, 346 (Plenum Press, NY, 1995), p. 413 Google Scholar
  11. I. Montvay, J. Zimányi, Nucl. Phys. A 316, 490 (1979) Google Scholar
  12. J. Cleymans, R. Sahoo, D.K. Srivastava, S. Wheaton, Eur. Phys. J. Special Topics 155, 13 (2008) Google Scholar
  13. J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998); and Phys. Rev. C 60, 054908 (1999) Google Scholar
  14. P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004), p. 491, and references therein Google Scholar
  15. J. Adams et al., STAR Collaboration, Nucl. Phys. A 757, 102 (2005) Google Scholar
  16. H. Dobler, J. Sollfrank, U. Heinz, Phys. Lett. B 457, 353 (1999) Google Scholar
  17. B. Tomášik, U.A. Wiedemann, U. Heinz, Heavy Ion Phys. 17, 105 (2003) Google Scholar
  18. J.M. Burward-Hoy et al., PHENIX Collaboration, Nucl. Phys. A 715, 498C (2003) Google Scholar
  19. J. Adams et al., STAR Collaboration, Phys. Rev. Lett. 92, 112301 (2004) Google Scholar
  20. F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997); erratum: Z. Phys. C 76, 578 (1997) Google Scholar
  21. F. Becattini, Z. Phys. C 69, 485 (1996) and Nucl. Phys. A 702, 336 (2002); F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006) Google Scholar
  22. F. Karsch, Lect. Notes Phys. 583, 209 (2002) Google Scholar
  23. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006) Google Scholar
  24. L.V. Bravina et al., Phys. Rev. C 62, 064906 (2000); Phys. Rev. C 63, 064902 (2001) Google Scholar
  25. S.A. Bass et al., Phys. Rev. C 60, 021902 (1999); L.V. Bravina et al., Phys. Rev. C 60, 024904 (1999); S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000) Google Scholar
  26. U. Heinz, Nucl. Phys. A 661, 140 (1999) Google Scholar
  27. R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001); C. Greiner, S. Leupold, J. Phys. G 27, L95 (2001) Google Scholar
  28. U. Heinz, Nucl. Phys. A 638, 357C (1998) Google Scholar
  29. R. Stock, Phys. Lett. B 456, 277 (1999) Google Scholar
  30. C. Slotta, J. Sollfrank, U. Heinz, AIP Conf. Proc. 340, 462 (1995) [arXiv:hep-ph/9504225] Google Scholar
  31. P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004) Google Scholar
  32. C. Greiner, P. Koch-Steinheimer, F.M. Liu, I. Shovkovy, H. Stöcker, J. Phys. G 31, S725 (2005); J. Noronha-Hostler, C. Greiner, I.A. Shovkovy [arXiv:nucl-th/0703079]; C. Greiner, Eur. Phys. J. Special Topics 155, 61 (2008) Google Scholar
  33. The chemical decoupling temperatures extracted from the measured hadron abundance ratios depend somewhat on the details of the hadron resonance gas model employed: Ref. STAR_Tchem gives Tchem=163±4 MeV, μB=24±4 MeV for central Au+Au collisions whereas in Ref. STAR_Tdec one finds Tchem=157±6 MeV, μB=22±4 MeV for the same data. We will here use the values from the centrality dependence study presented in Ref. STAR_Tdec which are consistently on the lower end of this range Google Scholar
  34. U. Heinz, G. Kestin, PoS CPOD2006, 038 (2006) [arXiv:nucl-th/0612105] Google Scholar
  35. M. Cheng et al., Phys. Rev. D 74, 054507 (2006) Google Scholar
  36. The code can be downloaded from URL See also P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000) and P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003) Google Scholar
  37. P.F. Kolb, U. Heinz, in Quark Gluon Plasma 3, edited by R.C. Hwa and X.N. Wang (World Scientific, Singapore, 2004), p. 634, and references therein Google Scholar
  38. U. Heinz, J. Phys. G 31, S717 (2005); and [nucl-th/0512051], published in Extreme QCD, edited by G. Aarts, S. Hands (Univ. of Wales, Swansea, 2006), p. 3 Google Scholar
  39. E. Schnedermann, J. Sollfrank, U. Heinz, NATO Adv. Study Inst. Ser. B Phys. 303, 175 (1993) Google Scholar
  40. C.M. Hung, E.V. Shuryak, Phys. Rev. C 57, 1891 (1998) Google Scholar
  41. J. Sollfrank, U. Heinz, H. Sorge, N. Xu, Phys. Rev. C 59, 1637 (1999) Google Scholar
  42. A. Dumitru, L. Portugal, D. Zschiesche, Phys. Rev. C 73, 024902 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA
  2. 2.Physics Department, Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations