Advertisement

The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 271–274 | Cite as

Thermodynamic properties of isomeric pentanols under elevated pressures determined by the acoustic method

  • M. Dzida
Article

Abstract.

Three isomeric pentanols were studied: pentan-1-ol, 2-methyl-1-buta- nol, and 2-methyl-2-butanol. Isobaric heat capacities and internal pressure at pressures up to 100 MPa and temperatures ranging from 293 K to 318 K were determined by the acoustic method. In calculations the measured speeds of sound as function of temperature and pressure together with densities as function of temperature under atmospheric pressure and the literature isobaric heat capacities for the atmospheric pressure were used. To this end, the method, based on the suggestion of Davis and Gordon [1] was applied. The results obtained show that the effect of pressure on and the values of isobaric heat capacity and internal presure of 2-methyl-2-butanol is higher than that of pentan-1-ol, 2-methyl-1-butanol over the whole pressure range. That facilitates telling 2-methyl-2-butanol from pentan-1-ol and 2-methyl-1-butanol.

Keywords

Internal Pressure European Physical Journal Special Topic Pressure Dependence Adiabatic Compressibility Acoustic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Davis, R.B. Gordon, J. Chem. Phys. 46, 2650 (1967) Google Scholar
  2. D. Muoñoz, R.A. Peinado, M. Medina, J. Moreno, Eur. Food Res. Technol. 222, 629 (2006) Google Scholar
  3. D. González-Arjona, V. González-Gallero, F. Pablos, A.G. González, Anal. Chem. Acta 381, 257 (1999) Google Scholar
  4. J.M. Resa, C. González, J.M. Goenaga, J. Chem. Eng. Data 51, 73 (2006) Google Scholar
  5. D. Kulikov, S.P. Verevkin, A. Heintz, Fluid Phase Equilib. 192, 187 (2001) Google Scholar
  6. A. D'Aprano, D.I. Donato, V. Agrigento, J. Sol. Chem. 10, 673 (1981) Google Scholar
  7. T.F. Sun, C.A. Ten Seldam, P.J. Kortbeek, N.J. Trappeniers, S.N. Biswas, Phys Chem. Liq. 18, 107 (1988) Google Scholar
  8. W. Marczak, M. Dzida, S. Ernst, High Temp. – High Press. 32, 283 (2000) Google Scholar
  9. A. Żak, M. Dzida, M. Zorebski, S. Ernst, Rev. Sci. Instrum. 71, 1756 (2000) Google Scholar
  10. M. Dzida, M. Chorażewski, M. Zorebski, R. Mańka, J. Phys. IV (France) 137, 203 (2006) Google Scholar
  11. M. Zábranský, V. Růžička, E.S. Domalski, J. Phys. Chem. 30, 1199 (2002) Google Scholar
  12. M. Zábranský, V. Růžička, V. Majer, J. Phys. Chem. 19, 719 (1990) Google Scholar
  13. M. Dzida, J. Sol. Chem. 33, 527 (2004) Google Scholar
  14. M. Dzida, J. Chem. Eng. Data 52, 521 (2007) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Dzida
    • 1
  1. 1.University of Silesia, Institute of ChemistryKatowicePoland

Personalised recommendations