The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 257–261 | Cite as

Ultrasonic absorption in binary liquid mixtures of 2-methyl-1-propanol with hexane at 293.15 K

  • K. BebekEmail author
  • A. Strugała


The ultrasonic absorption coefficients in binary mixtures of 2-methyl-1-propanol with hexane were measured within the frequency range from 10 to 80 MHz in the whole concentration range at 293.15 K. The results of the measurements in connection with literature data were used to calculate classical ultrasound absorption expressed as, αcl/f2, and some related properties, i.e. difference between experimental and classical absorption, Δ α/f2, and the ratio α/αcl for the pure components. They were also used for finding out the values of volume viscosity, ηV, which cannot be measured directly. The composition dependences of ultrasonic absorption were discussed in terms of the gradual breakage of alcohol oligomers and entropy effects connected with structural changes of non-polar solvent resulting in displacement of the solvate equilibrium.


European Physical Journal Special Topic Pure Component Aliphatic Alcohol Binary Solution Alcohol Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Garland, J. Rassing, J. Phys. Chem. 75, 3182 (1971) Google Scholar
  2. A. Djavanbakht, J. Lang, R. Zana, J. Phys. Chem. 81, 2620 (1977), J. Phys. Chem. 81 2630 Google Scholar
  3. K. Bebek, S. Ernst, Akust. Mol. Kwant. 15, 7 (1994) Google Scholar
  4. K. Bebek, A. Strugała, J. Phys. IV (France) 137, 199 (2006) Google Scholar
  5. E. Zorebski, M. Zorebski, M. Gepert, J. Phys. IV (France) 137, 231 (2006) Google Scholar
  6. E. Zorebski, M. Zorebski, J. Nurek, Z. Phys. Chem. 216, 1323 (2002) Google Scholar
  7. J. Troncoso, E. Carballo, C.A. Cerdeirina, D. Gonzalez, L. Romani, J. Chem. Eng. Data 45, 594 (2000) Google Scholar
  8. M.F. Bolotnikov, Y.A. Neruchev, Y.F. Melikhov, V.N. Verveyko, M.V. Verveyko, J. Chem. Eng. Data 50, 1095 (2005) Google Scholar
  9. J.A. Riddick, W.A. Bunger, Organic Solvents, 3rd edn. (Wiley, New York, 1977) Google Scholar
  10. S. Martinez, R. Garriga, P. Perez, M. Gracia, Fluid Phase Equilib. 168, 267 (2000) Google Scholar
  11. M. Dominguez, J. Pardo, M.C. Lopez, F.M. Royo, J.S. Urieta, Fluid Phase Equilib. 124, 147 (1996) Google Scholar
  12. B.E. deCominges, M.M. Pineiro, T.P. Iglesias, J.L. Legido, M.I. Paz Andrade, J. Chem. Thermodyn. 30, 1147 (1998) Google Scholar
  13. T.M. Aminabhavi, B. Gopalkrishna, J. Chem. Eng. Data 39, 865 (1994) Google Scholar
  14. I. Brown, W. Fock, F. Smith, J. Chem. Thermodyn. 1, 273 (1969) Google Scholar
  15. G. Tardajos, M. Diaz-Pena, E. Aicart, J. Chem. Thermodyn. 18, 683 (1986) Google Scholar
  16. M. Postigo, A. Mariano, L. Mussari, S. Canzonieri, J. Solution Chem. 30, 1081 (2001) Google Scholar
  17. K. Bebek, Arch. Acoust. 25, 369 (2000) Google Scholar
  18. J. Małecki, S. Balanicka, J. Nowak, J. Chem. Soc. Faraday II 76, 42 (1980) Google Scholar
  19. K. Bebek, J. Lira, Mol. Quant. Acoust. 20, 17 (1999) Google Scholar
  20. K. Bebek, Mol. Quant. Acoust. 26, 15 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.University of Silesia, Institute of ChemistryKatowicePoland
  2. 2.Department of Environmental MonitoringCentral Mining InstituteKatowicePoland

Personalised recommendations