The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 239–247 | Cite as

Application of the joint electro-acoustic method for partial discharge investigations within a power transformer

  • F. WitosEmail author
  • Z. Gacek


Analysis results of partial discharges (PD) measurements within a power transformer situated in a testing station, carried out by the so-called joint electro-acoustic method, is presented in the paper. Basing on measurements resultant from the electric method apparent charge values at different test voltage levels have been determined. Such charges are introduced by PD sources within one of three phases of high-voltage winding whereas two remaining phases are shorted and grounded. An analysis of acoustic emission (AE) measurement results allows us: to identify the main band of other acoustic phenomena (Barkhausen's acoustic effect, magnetostrictive phenomena, noises connected with circulation of the oil and other noises), to show the local character of PD measurements coming from AE method, to identify AE signals characterized by maximum value of ADC descriptor, to locate measuring points on the tank for mentioned signals. The correlation between apparent charge values in particular phases and ADC descriptor values (as maximum ones in AE signal sets, recorded at different measuring points for respective phases) is managed to settle.


Acoustic Emission European Physical Journal Special Topic Acoustic Emission Signal Power Transformer Partial Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.E. Lundgaard, IEEE Electr. Insul. Mag. 8, 25 (1992) Google Scholar
  2. L.E. Lundgaard, IEEE Electr. Insul. Mag. 8, 34 (1992) Google Scholar
  3. J. Skubis, EA w badaniach urzdze elektroenergetycznych, IPPT PAN, Warszawa 1993 (in Polish) Google Scholar
  4. H. Kawada, M. Honda, T. Innoe, T. Amemiya, IEEE Trans. Power Appar. Syst. 10, 422 (1984) Google Scholar
  5. Z. Deheng, T. Kexiong, J. Xianche, II Conf. Prop. Appl. Dielectr. Mater. 2, 614 (1988) Google Scholar
  6. P.M. Eletftherion, IEEE Electr. Insul. Mag. 9, 22 (1995) Google Scholar
  7. A.S. Faraq et al., Electr. Power Syst. Res. 50, 47 (1999) Google Scholar
  8. T. Boczar, Widma EA generowanej prze WNZ w izolacji olejowej, Oficyna Wydawnicza Politechniki Opolskiej, Opole 2000, ISSN 1429 (in Polish) Google Scholar
  9. Deng et al., Opt. Laser Technol. 33, 305 (2001) Google Scholar
  10. M. MacAlpine, Z. Zhiqiang, M.S. Demokan, Electr. Power Syst. Res. 63, 27 (2002) Google Scholar
  11. F. Witos, Z. Gacek, A. Opilski, Arch. Acoust. 27, 65 (2002) Google Scholar
  12. F. Witos, Z. Gacek, CIGRE 39th Int. Session, Paris, No. 11 (2002) Google Scholar
  13. F. Witos, Mol. Quant. Acoust. 23, 433 (2002) Google Scholar
  14. F. Witos, Z. Gacek, J. Phys. 129, 173 (2005) Google Scholar
  15. F. Witos, Z. Gacek, J. Phys. 129, 179 (2005) Google Scholar
  16. F. Witos, Z. Gacek, P. Paduch, J. Phys. (France) 137, 179 (2006) Google Scholar
  17. PN-EN 60076-3:2002 Transformatory – Cześć 3: Poziomy izolacji, próby wytrzymałości elektrycznej i zewnétrzne odstepy izolacyjne w powietrzu (Polish Standard) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Physics, Gliwice Silesian University of TechnologyGliwicePoland
  2. 2.Institute of Power Systems and Control, Silesian University of TechnologyGliwicePoland

Personalised recommendations