Advertisement

The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 211–216 | Cite as

Optoacoustic phenomena in insulating oils

  • M. Szmechta
  • D. Zmarzly
  • T. Boczar
  • M. Lorenc
Article

Abstract.

Sonoluminescence is a process by which light is emitted from collapsing ultrasound-driven gas bubbles in a liquid. Recent works on sonoluminescence have shown that many parameters of the dissolved gas, surrounding liquid and external conditions influences this phenomenon [10]. The light intensity and emitted light spectra depends mainly on the fluid and dissolved gases properties [9,13]. These features indicate the possibility of estimating the amount of dissolved chemical compounds in liquids. The use of sonoluminescence for aging properties diagnostic of insulation oils was proposed. This article presents the schematic of used measurement setup and points out the difficulties in the research resulted from subtleness of the process and no fully accepted sonoluminescence theory.

Keywords

European Physical Journal Special Topic Physical Journal Special Topic Table Quantum Acoustics Direct Digital Synthesis Chromium Hexacarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Dey, S. Aubry, Physica D 216, 136 (2006) Google Scholar
  2. Y. Hayashi, P. Choi, Ultrasonics 44, e421 (2006) Google Scholar
  3. T. Boczar, D. Zmarzły, IEEE Trans. Diel. Electr. Ins. 13, 632 (2006) Google Scholar
  4. C.T. Dervos, C.D. Paraskevas, P.D. Skafidas, N. Stefanou, IEEE ICDL 2005, 233 (2005) Google Scholar
  5. D.O. Zmarzły, J. Kedzia, J. Electrostatics 63, 409 (2005) Google Scholar
  6. M.P. Brenner, S. Hilgenfeldt, D. Lohse, Rev. Mod. Phys. 74, 425 (2002) Google Scholar
  7. Y.T. Didenko, W.B. McNamara III, K.S. Suslick, Phys. Rev. Lett. 84, 777 (2000) Google Scholar
  8. K. Yasui, Phys. Rev. E 60, 1754 (1999) Google Scholar
  9. W.B. McNamara III, Y.T. Didenko, K.S. Suslick, Nature 401, 772 (1999) Google Scholar
  10. S. Hilgenfeldt, M.P. Brenner, S. Grossman, D. Lohse, J. Fluid Mech. 365, 171 (1998) Google Scholar
  11. R. Loefstedt, K. Weninger, S. Putterman, B. Barber, Phys. Rev. E 51, 4400 (1995) Google Scholar
  12. R.A. Hiller, S.J. Putterman, Phys. Rev. Lett. 75, 3549 (1995) Google Scholar
  13. E.B. Flint, K.S. Suslick, Science 253, 1397 (1991) Google Scholar
  14. E.B. Flint, K.S. Suslick, J. Am. Chem. Soc. 111, 6987 (1989) Google Scholar
  15. K.S. Suslick, E.B. Flint, Nature 330, 553 (1987) Google Scholar
  16. R. Togel, S. Hilgenfeld, D. Lohse, Phys. Rev. Lett. 84, 2509 (2000) Google Scholar
  17. B.P. Barber, R.A. Hiller, R. Löfstedt, S.J. Putterman, K.R. Weninger, Phys. Rep. 181, 65 (1997) Google Scholar
  18. T. Boczar, Mol. Quant. Acoust. 23, 63 (2003) Google Scholar
  19. T. Boczar, S. Borucki, A. Cichon, M. Lorenc, Mol. Quant. Acoust. 26, 35 (2005) Google Scholar
  20. T. Boczar, M. Lorenc, Mol. Quant. Acoust. 25, 177 (2004) Google Scholar
  21. C.C. Wu, P.H. Roberts, Phys. Rev. Lett. 80, 3424 (1993) Google Scholar
  22. D.J. Flannigan, K.S. Suslick, Nature 434, 52 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Szmechta
    • 1
  • D. Zmarzly
    • 1
  • T. Boczar
    • 1
  • M. Lorenc
    • 1
  1. 1.Faculty of Electrical Engineering, Automatic Control and Computer Science, Opole University of TechnologyOpolePoland

Personalised recommendations