Advertisement

The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 191–194 | Cite as

Biferroic electro – acoustic ceramics with \(\mbox{\sffamily\bfseries BiFeO}_{\hbox{\sffamily\bfseries\fontsize{12}{12}\selectfont 3}}\) composition

  • J. Rymarczyk
  • D. Machura
  • J. Ilczuk
Article

Abstract.

Bismuth ferrite, one of a few multiferroics, has attracted much attention for many decades since 1960. BiFeO3 (BFO) belongs to perovskite class of complex oxides. BFO is one of only a few materials in which (anti)ferromagnetism and ferroelectricity coexis in room temperature. Authors prepared BiFeO3 ceramics by solid state reaction method. The synthesized powders were characterized by X-ray diffraction method. Thermogravimetric and differential thermal analysis were investigated. The microstructure of the BFO ceramics was investigated by means of scanning transmission electron microscopy, and the ferroelectric characteristic of BFO ceramics was demonstrated. BFO is very interesting ceramic material for potential applications in the memory devices, sensors, satellite communications, optical filters and smart devices.

Keywords

European Physical Journal Special Topic Scanning Transmission Electron Microscopy Solid State Reaction Method Memory Source Smart Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Smolenskii, et al., Segnetoelectrics and Antisegnetoelectrics (Nauka Publishers, Leningrad, 1971) (in Russian); G.A. Smolenskii, I.E. Chupis, Sov. Phys. Uspekhi 25, 475 (1982) Google Scholar
  2. Y.N. Venevtsev, V.V. Gagulin, Ferroelectrics 162, 23 (1994) Google Scholar
  3. K. Aizu, Phys. Rev. B 2, 754 (1970) Google Scholar
  4. H. Schmid, Ferroelectrics 162, 317 (1994) Google Scholar
  5. C.H. Ahn, K.M. Rabe, J.-M. Triscone, Science 303, 488 (2004) Google Scholar
  6. F. Kubel, H. Schmid, Acta Crystallogr. B 46, 698 (1990) Google Scholar
  7. J.R. Teague, R. Gerson, W.J. James, Solid State Commun. 8, 1073 (1970) Google Scholar
  8. I. Sosnowska, M. Lowenhaupt, W.I.F. David, R.M. Ibberson, Physica B 117, 180 (1992) Google Scholar
  9. E.F. Bertaut, in Magnetism III, edited by G.T. Rado, H. Suhl (Academic Press, New York, 1960), p. 149 Google Scholar
  10. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982) Google Scholar
  11. R. Przeniosxo, A. Palewicz, M. Regulski, I. Sosnowska, R.M. Ibberson, K.S. Knight, J. Phys. Condens. Matter 18, 2069 (2006) Google Scholar
  12. C. Tabares-Munoz, J.P. Rivera, A. Bezinges, H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985) Google Scholar
  13. J. Skrzypek, M. Kosec, Z. Surowiak, Mol. Quant. Acoust. 26, 227 (2005) Google Scholar
  14. M. Plonska, Z. Surowiak, Mol. Quant. Acoust. 27, 207 (2006) Google Scholar
  15. Z. Surowiak, Mol. Quant. Acoust. 27, 265 (2006) Google Scholar
  16. Yu.F. Popov, A.K. Zvezdin, G.P. Vorobvev, A.M. Kadomtseva, V.A. Murashov, JETP Lett. 57, 69 (1993) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • J. Rymarczyk
    • 1
  • D. Machura
    • 1
  • J. Ilczuk
    • 1
  1. 1.Department of Material ScienceFaculty of Computer Science and Material Science, University of SilesiaSosnowiecPoland

Personalised recommendations