The European Physical Journal Special Topics

, Volume 154, Issue 1, pp 93–96 | Cite as

Interactions of the Polyaniline and Nafion bilayer sensor structure with ammonia in a dry and wet air atmosphere

  • W. Jakubik


Presented here are the preliminary results concerning an interactions of a novel bilayer sensor structure of polyaniline and Nafion as an ammonia gas sensors in a Surface Acoustic Wave and electric planar systems. The investigations were performed with a 50 and 100 ppm concentrations of the ammonia (NH3) in a synthetic dry (relative humidity RH∼4–5%) and wet air (RH∼50–54%) atmosphere. The prototype polyaniline and nafion bilayer structure has been manufactured by two deposition technologies: 72 nm of PANI by PVD technology and Nafion film (\(\sim\kern-3pt 300\) nm) by spin coating technology and specific process of annealing. A good interactions with ammonia for the bilayer structure (PANI film with Nafion) has been observed especially at higher relative humidity of the atmosphere.


Polyaniline European Physical Journal Special Topic Bilayer Structure Sensor Actuator High Interaction Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. N. Li, Y. Lee, L.H. Ong, J. Appl. Electrochem. 22, 512 (1992) Google Scholar
  2. F. Trinidad, M.C. Montemayer, E. Fatas, J. Electrochem. Soc. 138, 3186 (1991) Google Scholar
  3. P.R. Teasdale, G.G. Wallace, Analyst 118, 324 (1993) Google Scholar
  4. P.N. Bartlett, S.K.I. Chung, Sensors Actuators 20, 287 (1989) Google Scholar
  5. E.W. Paul, A.J. Ricco, M.S. Wrighton, J. Phys. Chem. 89, 1441 (1985) Google Scholar
  6. S.K. Dhawan, D.C. Trivedi, Poly. Inter. 25, 55 (1991) Google Scholar
  7. A. Boyle, E.M. Genies, M. Lapkowski, Synth. Met. 28, C769 (1989) Google Scholar
  8. H. Hu, M. Trejo, M.E. Nicho, J.M. Saniger, A. Garcia-Valenzuela, Sensors Actuators B 82, 14 (2002) Google Scholar
  9. R.V. Plank, Y. Wei, N.J. DiNardo, J.M. Vohs, Chem. Phys. Lett. 263, 33 (1996) Google Scholar
  10. T.R. Dillingham, D.M. Cornelison, E. Bullock, J. Vac. Sci. Technol. A 12, 2436 (1994) Google Scholar
  11. T. Pustelny, Acustica-Acta Acust. 83, 482 (1997) Google Scholar
  12. T. Pustelny, Ultrasonics 33, 289 (1995) Google Scholar
  13. P. Dannetum, K. Uvdal, Chemtronics 5, 173 (1991) Google Scholar
  14. W. Jakubik, M. Urbańczyk, J. Technical Phys. 38, 3 589 (1997) Google Scholar
  15. M. Urbańczyk, W. Jakubik, Electron Technol. 331-332, 161 (2000) Google Scholar
  16. W. Jakubik, M. Urbańczyk, S. Kochowski, J. Bodzenta, Sensors Actuators B 82, 265 (2002) Google Scholar
  17. W. Jakubik, M. Urbańczyk, S. Kochowski, J. Bodzenta, Sensors Actuators B 96, 321 (2003) Google Scholar
  18. M. Penza, V.I. Anisimkin, Sensors Actuators A 76, 162 (1999) Google Scholar
  19. C. Tyszkiewicz, E. Maciak, P. Karasinski, T. Pustelny, Mol. Quant. Acoust. 26, 267 (2005) Google Scholar
  20. L. Ding, X. Wang, R.V. Gregory, Synth. Met. 104, 73 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • W. Jakubik
    • 1
  1. 1.Institute of Physics, Silesian University of TechnologyGliwicePoland

Personalised recommendations