Advertisement

The European Physical Journal Special Topics

, Volume 149, Issue 1, pp 145–171 | Cite as

Polymorphism in ferroic functional elements

Bridging length and time scales
  • S. Gemming
  • R. Luschtinetz
  • I. Chaplygin
  • G. Seifert
  • C. Loppacher
  • L. M. Eng
  • T. Kunze
  • C. Olbrich
Article

Abstract.

The present study describes an approach for the scale-bridging modeling of ferroic materials as functional elements in micro- and nanoelectronic devices. Ferroic materials are characterized by temperature-dependent complex ordering phenomena of the internal magnetic, electronic, and structural degrees of freedom with several involved length and time scales. Hence, the modelling of such compounds is not straightforward, but relies on a combination of electronic-structure-based methods like ab-initio and density-functional schemes with classical particle-based approaches given by Monte-Carlo simulations with Ising, lattice-gas, or Heisenberg Hamiltonians, which incorporate material-specific parameters both from theory and experiment. The interplay of those methods is demonstrated for device concepts based on electroceramic materials like ferroelectrics and multiferroics, whose functionality is closely related with their propensity towards structural and magnetic polymorphism. In the present case, such scale-bridging techniques are employed to aid the development of an organic field effect transistor on a ferroelectric substrate generated by the self-assembly of field-sensitive molecules on the surfaces of ferroic oxides. Electronic-structure-based methods yield the microscopic properties of the oxide, the surface, the molecules, and the respective interactions. They are combined with classical particle-based methods on a scale-hopping basis. This combination allows to study the morphology evolution during the self-assembly of larger adsorbate arrays on the (defective) oxide surface and to investigate the interplay of low-temperature magnetic ordering phenomena with the ferroelectric functionality at higher temperatures in multiferroic oxides like the hexagonal manganites. The combination of density-functional data with classical continuum modelling also yielded a model Hamiltonian for the quick determination of the properties of a gate structure based on bio-functionalized carbon nanotubes.

Keywords

Manganite European Physical Journal Special Topic Cluster Size Distribution Spin Arrangement Gate Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X.B. Lu, Z.G. Liu, X. Zhang, R. Huang, H.W. Zhou, X.P. Wang, B.-Y. Nguyen, J. Phys. D: Appl. Phys. 36, 3047 (2003) Google Scholar
  2. Y.H. Liu, X.M. Chen, J. Inorg. Mater. 18, 325 (2003) Google Scholar
  3. S. Ríos, A. Ruediger, A.Q. Jiang, J.F. Scott, H. Lu, Z. Chen, J. Phys.: Condens. Matter 15, L305 (2003) Google Scholar
  4. R. Poyato, M.L. Calzada, L. Pardo, J. García López, M.A. Respaldiza, J. Eur. Ceram. Soc. 24, 1615 (2004) Google Scholar
  5. X.H. Zhu, W. Peng, J. Miao, D.N. Zheng, Mater. Lett. 58, 2045 (2004) Google Scholar
  6. Y. Hotta, G.W.J. Hassink, T. Kawai, H. Tabata, Jpn. J. Appl. Phys. 42, 5908 (2003) Google Scholar
  7. K. Uchida, S. Tsuneyuki, Phys. Rev. B 68, 174107 (2003) Google Scholar
  8. M. Krcmar, C.L. Fu, Phys. Rev. B 68, 115404 (2003) Google Scholar
  9. C. Bungaro, K.M. Rabe, Phys. Rev. B 69, 184101 (2004) Google Scholar
  10. M.G. Stacchiotti, Appl. Phys. Lett. 84, 251 (2004) Google Scholar
  11. A. Antons, J.B. Neaton, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 71, 024102 (2005) Google Scholar
  12. S. Hyun, K. Char, Appl. Phys. Lett. 79, 254 (2001) Google Scholar
  13. M. Fiebig, Th. Lottermoser, M.K. Kneip, M. Bayer, J. Appl. Phys. 99, 08E302 (2006) Google Scholar
  14. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mat. 5, 312 (2006) Google Scholar
  15. S. Dorfman, D. Fuks, E. Kotomin, Thin Solid Films 318, 65 (1998) Google Scholar
  16. L.M. Eng, F. Schlaphof, S. Trogisch, A. Roelofs, R. Waser, Ferroelectrics 251, 11 (2001) Google Scholar
  17. H. Zhang, Z. Yin, M.S. Zhang, Phys. Lett. A 310, 479 (2003) Google Scholar
  18. W.-C. Yang, B.J. Rodriguez, A. Gruverman, R.J. Nemanrich, Appl. Phys. Lett. 85, 2316 (2004) Google Scholar
  19. H. Kessler, H. Balke, J. Mech. Phys. Solids 54, 86 (2006) Google Scholar
  20. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989) Google Scholar
  21. H. Eschrig, The Fundamentals of Density Functional Theory (Gutenbergplatz, Leipzig, 2003) Google Scholar
  22. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) Google Scholar
  23. R.M. Dreizsler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990) Google Scholar
  24. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989) Google Scholar
  25. I. Popov, T. Kunze, S. Gemming, G. Seifert, Eur. Phys. J. D (accepted) Google Scholar
  26. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995) Google Scholar
  27. A.M. Stoneham, J.H. Harding, Nat. Mater. 2, 65 (2003) Google Scholar
  28. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003) Google Scholar
  29. M. Radke de Cuba, S. Gemming, H. Emmerich, Eur. Phys. J. (this issue) Google Scholar
  30. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) Google Scholar
  31. M. Levy, Phys. Rev. A 26, 1200 (1982) Google Scholar
  32. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972) Google Scholar
  33. N.D. Mermin, Phys. Rev. 137, A1441 (1965) Google Scholar
  34. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) Google Scholar
  35. O. Gunnarson, M. Jonson, B.I. Lundqvist, Phys. Rev. B 20, 3136 (1979) Google Scholar
  36. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976) Google Scholar
  37. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985) Google Scholar
  38. J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998) Google Scholar
  39. R. Scholz, J.-M. Jancu, F. Bassani, Mat. Res. Soc. Symp. Proc. 491, 383 (1998) Google Scholar
  40. A. Di Carlo, Mat. Res. Soc. Symp. Proc. 491, 391 (1998) Google Scholar
  41. C.Z. Wang, K.M. Ho, C.T. Chan, Phys. Rev. Lett. 70, 611 (1993) Google Scholar
  42. P. Ordejón, D. Lebedenko, M. Menon, Phys. Rev. B 50, 5645 (1994) Google Scholar
  43. M. Menon, K.R. Subbaswamy, Phys. Rev. B 55, 9231 (1997) Google Scholar
  44. C.M. Goringe, D.R. Bowler, E. Hernandez, Rep. Prog. Phys. 60, 1447 (1997) Google Scholar
  45. J.M. Knaup, C. Köhler, M. Hoffmann, P.H. König, Th. Frauenheim, Eur. Phys. J. (this issue) Google Scholar
  46. T.A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, T. Frauenheim, Phys. Rev. B 63, 085108 (2001) Google Scholar
  47. A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, T. Frauenheim, Physica B 314, 86 (2002) Google Scholar
  48. A.M. Stoneham, P.W. Tasker, J. Phys. C: Solid State Phys. 18, L543 (1985) Google Scholar
  49. M.W. Finnis, Acta Metall. Mater. 40, S25 (1992) Google Scholar
  50. N.D. Lang, W. Kohn, Phys. Rev. B 7, 3541 (1973) Google Scholar
  51. N.V. Smith, C.T. Chen, M. Weinert, Phys. Rev. B 40, 7565 (1989) Google Scholar
  52. D.M. Duffy, J.H. Harding, A.M. Stoneham, Acta Metall. Mater. 40, S11 (1992) Google Scholar
  53. D.M. Duffy, J.H. Harding, A.M. Stoneham, Phil. Mag. A 67, 865 (1993) Google Scholar
  54. A.M. Stoneham, P.W. Tasker, Phil. Mag. B 55, 237 (1987) Google Scholar
  55. U. Schoenberger, O.K. Andersen, M. Methfessel, Acta Metall. Mater. 40, S1 (1992) Google Scholar
  56. J.R. Smith, T. Hong, D.J. Srolovitz, Phys. Rev. Lett. 72, 4021 (1994) Google Scholar
  57. J. Purton, S.C. Parker, D.W. Bullett, J. Phys. Condens. Matter 9, 5709 (1997) Google Scholar
  58. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983) Google Scholar
  59. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984) Google Scholar
  60. M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50, 45 (1984) Google Scholar
  61. J.A. Moriarty, R. Phillips, Phys. Rev. Lett. 66, 3036 (1990) Google Scholar
  62. J. Tersoff, Phys. Rev. B 38, 9902 (1988) Google Scholar
  63. T. Ochs, O. Beck, C. Elsässer, B. Meyer, Phil. Mag. A 80, 351 (2000) Google Scholar
  64. J.H. Harding, Rep. Prog. Phys. 53, 1403 (1990) Google Scholar
  65. B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958) Google Scholar
  66. C. Elsässer, A.G. Marinopoulos, Acta Mater. 49, 2951 (2001) Google Scholar
  67. E. Heifets, E.A. Kotomin, R. Orlando, J. Phys. Condens. Matter 8, 6577 (1996) Google Scholar
  68. K. Iwahori, S. Watanabe, T. Komeda, M. Kawai, A. Saito, Y. Kuwahara, M. Aono, Jpn. J. Appl. Phys. 38, 3946 (1999) Google Scholar
  69. H.B. Moon, J.H. Cho, J.S. Ahn, J. Kor. Phys. Soc. 47, S251 (2005) Google Scholar
  70. www.abinit.org; the ABINIT code is a common project of the Universite Catholique de Louvain, Corning Inc. and other contributors Google Scholar
  71. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998) Google Scholar
  72. S. Gemming, M. Schreiber, Chem. Phys. 309, 3 (2005) Google Scholar
  73. S. Gemming, G. Seifert, Acta Mater. (2006) Google Scholar
  74. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005) Google Scholar
  75. A.M. Kadomtseva, Yu. F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase Trans. 79, 1019 (2006) Google Scholar
  76. K. Sawada, N. Nagaosa, Phys. Rev. Lett. 95, 237402 (2005) Google Scholar
  77. K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999) Google Scholar
  78. I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999) Google Scholar
  79. H. Eschrig, K. Koepernik, I. Chaplygin, J. Solid State Chem. 176, 482 (2003) Google Scholar
  80. R.C. Rai, J. Cao, S. Brown, J.L. Musfeldt, D. Kasinathan, D.J. Singh, G. Lawes, N. Rogado, R.J. Cava, X. Wei, Phys. Rev. B 74, 235101 (2006) Google Scholar
  81. P.W. Anderson, in Magnetism, Vol. 1, edited by G.T. Rado and H. Suhl (Academic Press, New York, 1963), p. 25 Google Scholar
  82. L. Capriotti, A. Cuccoli, V. Tognetti, P. Verruchi, R. Vaia, Phys. Rev. B 60, 7299 (1999) Google Scholar
  83. L. Capriotti, R. Vaia, A. Cuccoli, V. Tognetti, Phys. Rev. B 58, 273 (1998) Google Scholar
  84. Gaussian; Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian Inc., Wallingford CT, 2004) Google Scholar
  85. J. Fabian, Theo. Chem. Acc. 106, 199 (2001) Google Scholar
  86. M. Laicini, P. Spearman, S. Tavazzi, A. Borghesi, Phys. Rev. B 71, 045212 (2005) Google Scholar
  87. A. Ozawa, K. Takmiya, T. Otsubo, T. Kobayashi, Chem. Phys. Lett. 409, 224 (2005) Google Scholar
  88. D. Rohde, L. Dunsch, A. Tabet, H. Hartmann, J. Phys. Chem. B 110, 8223 (2006) Google Scholar
  89. Y. Gao, C.G. Liu, Y.S. Liang, J. Phys. Chem. A 106, 5380 (2002) Google Scholar
  90. S.A. McGill, S.G. Rao, P. Manandhar, P. Xiong, S. Hong, Appl. Phys. Lett. 89, 163123 (2006) Google Scholar
  91. Z. Guo, P.J. Sadler, S.C. Tsang, Adv. Mater. 10, 701 (1998) Google Scholar
  92. D. Nepal, J.-I. Sohn, W.K. Aicher, S. Lee, K.E. Geckeler, Biomacromolecules 6, 2919 (2005) Google Scholar
  93. S.R. Vogel, M.M. Kappes, F. Hennrich, C. Richert, Chem. Eur. J. 13, 1815 (2007) Google Scholar
  94. T. Okada, T. Kaneko, R. Hatekeyama, K. Tohji, Chem. Phys. Lett. 417, 288 (2006) Google Scholar
  95. M.J. O'Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001) Google Scholar
  96. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003) Google Scholar
  97. X. Huang, R.S. Mclean, M. Zheng, Anal. Chem. 77, 6225 (2005) Google Scholar
  98. A.N. Enyashin, S. Gemming, G. Seifert, Nanotechnology (accepted) Google Scholar
  99. S.R. Lustig, A. Jagota, C. Khripin, M. Zheng, J. Phys. Chem. B 109, 2559 (2005) Google Scholar
  100. H. Gao, Y. Kong, D. Cui, C.S. Ozkan, Nano Lett. 3, 471 (2003) Google Scholar
  101. E.Y. Lau, F.C. Lightstone, M.E. Colvin, Chem. Phys. Lett. 412, 82 (2005) Google Scholar
  102. G. Lu, P. Maragakis, E. Kaxiras, Nano Lett. 5, 897 (2005) Google Scholar
  103. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992) Google Scholar
  104. J. Tersoff, R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994) Google Scholar
  105. M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 39, 1251 (2001) Google Scholar
  106. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nature 433, 476 (2005) Google Scholar
  107. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949) Google Scholar
  108. J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976) Google Scholar
  109. R. Scholz, A.Y. Kobitski, D.R.T. Zahn, M. Schreiber, Phys. Rev. B 72, 245208 (2005); H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992) Google Scholar
  110. L. Onsager, Phys. Rev. 65, 117 (1944) Google Scholar
  111. C.N. Yang, Phys. Rev. 85, 808 (1952) Google Scholar
  112. C. Domb, P. Sykes, Proc. R. Soc. Lond. A 240, 214 (1957) Google Scholar
  113. C. Loppacher, U. Zerweck, L.M. Eng, S. Gemming, G. Seifert, C. Olbrich, K. Morawetz, M. Schreiber, Nanotechnology 17, 1568 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • S. Gemming
    • 1
  • R. Luschtinetz
    • 2
  • I. Chaplygin
    • 2
  • G. Seifert
    • 2
  • C. Loppacher
    • 3
  • L. M. Eng
    • 3
  • T. Kunze
    • 2
    • 4
  • C. Olbrich
    • 4
    • 5
  1. 1.Institute of Ion-Beam Physics and Materials ScienceDresdenGermany
  2. 2.Institute of Chemistry, Technical University DresdenDresdenGermany
  3. 3.Institute of Applied Photophysics, Technical University DresdenDresdenGermany
  4. 4.Institute of Physics, Technical University ChemnitzChemnitzGermany
  5. 5.School of Engineering and Science, Jacobs University BremenBremenGermany

Personalised recommendations