Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polymorphism in ferroic functional elements

Bridging length and time scales

  • 103 Accesses

  • 3 Citations

Abstract.

The present study describes an approach for the scale-bridging modeling of ferroic materials as functional elements in micro- and nanoelectronic devices. Ferroic materials are characterized by temperature-dependent complex ordering phenomena of the internal magnetic, electronic, and structural degrees of freedom with several involved length and time scales. Hence, the modelling of such compounds is not straightforward, but relies on a combination of electronic-structure-based methods like ab-initio and density-functional schemes with classical particle-based approaches given by Monte-Carlo simulations with Ising, lattice-gas, or Heisenberg Hamiltonians, which incorporate material-specific parameters both from theory and experiment. The interplay of those methods is demonstrated for device concepts based on electroceramic materials like ferroelectrics and multiferroics, whose functionality is closely related with their propensity towards structural and magnetic polymorphism. In the present case, such scale-bridging techniques are employed to aid the development of an organic field effect transistor on a ferroelectric substrate generated by the self-assembly of field-sensitive molecules on the surfaces of ferroic oxides. Electronic-structure-based methods yield the microscopic properties of the oxide, the surface, the molecules, and the respective interactions. They are combined with classical particle-based methods on a scale-hopping basis. This combination allows to study the morphology evolution during the self-assembly of larger adsorbate arrays on the (defective) oxide surface and to investigate the interplay of low-temperature magnetic ordering phenomena with the ferroelectric functionality at higher temperatures in multiferroic oxides like the hexagonal manganites. The combination of density-functional data with classical continuum modelling also yielded a model Hamiltonian for the quick determination of the properties of a gate structure based on bio-functionalized carbon nanotubes.

This is a preview of subscription content, log in to check access.

References

  1. X.B. Lu, Z.G. Liu, X. Zhang, R. Huang, H.W. Zhou, X.P. Wang, B.-Y. Nguyen, J. Phys. D: Appl. Phys. 36, 3047 (2003)

  2. Y.H. Liu, X.M. Chen, J. Inorg. Mater. 18, 325 (2003)

  3. S. Ríos, A. Ruediger, A.Q. Jiang, J.F. Scott, H. Lu, Z. Chen, J. Phys.: Condens. Matter 15, L305 (2003)

  4. R. Poyato, M.L. Calzada, L. Pardo, J. García López, M.A. Respaldiza, J. Eur. Ceram. Soc. 24, 1615 (2004)

  5. X.H. Zhu, W. Peng, J. Miao, D.N. Zheng, Mater. Lett. 58, 2045 (2004)

  6. Y. Hotta, G.W.J. Hassink, T. Kawai, H. Tabata, Jpn. J. Appl. Phys. 42, 5908 (2003)

  7. K. Uchida, S. Tsuneyuki, Phys. Rev. B 68, 174107 (2003)

  8. M. Krcmar, C.L. Fu, Phys. Rev. B 68, 115404 (2003)

  9. C. Bungaro, K.M. Rabe, Phys. Rev. B 69, 184101 (2004)

  10. M.G. Stacchiotti, Appl. Phys. Lett. 84, 251 (2004)

  11. A. Antons, J.B. Neaton, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 71, 024102 (2005)

  12. S. Hyun, K. Char, Appl. Phys. Lett. 79, 254 (2001)

  13. M. Fiebig, Th. Lottermoser, M.K. Kneip, M. Bayer, J. Appl. Phys. 99, 08E302 (2006)

  14. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mat. 5, 312 (2006)

  15. S. Dorfman, D. Fuks, E. Kotomin, Thin Solid Films 318, 65 (1998)

  16. L.M. Eng, F. Schlaphof, S. Trogisch, A. Roelofs, R. Waser, Ferroelectrics 251, 11 (2001)

  17. H. Zhang, Z. Yin, M.S. Zhang, Phys. Lett. A 310, 479 (2003)

  18. W.-C. Yang, B.J. Rodriguez, A. Gruverman, R.J. Nemanrich, Appl. Phys. Lett. 85, 2316 (2004)

  19. H. Kessler, H. Balke, J. Mech. Phys. Solids 54, 86 (2006)

  20. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

  21. H. Eschrig, The Fundamentals of Density Functional Theory (Gutenbergplatz, Leipzig, 2003)

  22. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

  23. R.M. Dreizsler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

  24. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  25. I. Popov, T. Kunze, S. Gemming, G. Seifert, Eur. Phys. J. D (accepted)

  26. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995)

  27. A.M. Stoneham, J.H. Harding, Nat. Mater. 2, 65 (2003)

  28. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003)

  29. M. Radke de Cuba, S. Gemming, H. Emmerich, Eur. Phys. J. (this issue)

  30. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

  31. M. Levy, Phys. Rev. A 26, 1200 (1982)

  32. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

  33. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

  34. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

  35. O. Gunnarson, M. Jonson, B.I. Lundqvist, Phys. Rev. B 20, 3136 (1979)

  36. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

  37. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

  38. J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)

  39. R. Scholz, J.-M. Jancu, F. Bassani, Mat. Res. Soc. Symp. Proc. 491, 383 (1998)

  40. A. Di Carlo, Mat. Res. Soc. Symp. Proc. 491, 391 (1998)

  41. C.Z. Wang, K.M. Ho, C.T. Chan, Phys. Rev. Lett. 70, 611 (1993)

  42. P. Ordejón, D. Lebedenko, M. Menon, Phys. Rev. B 50, 5645 (1994)

  43. M. Menon, K.R. Subbaswamy, Phys. Rev. B 55, 9231 (1997)

  44. C.M. Goringe, D.R. Bowler, E. Hernandez, Rep. Prog. Phys. 60, 1447 (1997)

  45. J.M. Knaup, C. Köhler, M. Hoffmann, P.H. König, Th. Frauenheim, Eur. Phys. J. (this issue)

  46. T.A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, T. Frauenheim, Phys. Rev. B 63, 085108 (2001)

  47. A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, T. Frauenheim, Physica B 314, 86 (2002)

  48. A.M. Stoneham, P.W. Tasker, J. Phys. C: Solid State Phys. 18, L543 (1985)

  49. M.W. Finnis, Acta Metall. Mater. 40, S25 (1992)

  50. N.D. Lang, W. Kohn, Phys. Rev. B 7, 3541 (1973)

  51. N.V. Smith, C.T. Chen, M. Weinert, Phys. Rev. B 40, 7565 (1989)

  52. D.M. Duffy, J.H. Harding, A.M. Stoneham, Acta Metall. Mater. 40, S11 (1992)

  53. D.M. Duffy, J.H. Harding, A.M. Stoneham, Phil. Mag. A 67, 865 (1993)

  54. A.M. Stoneham, P.W. Tasker, Phil. Mag. B 55, 237 (1987)

  55. U. Schoenberger, O.K. Andersen, M. Methfessel, Acta Metall. Mater. 40, S1 (1992)

  56. J.R. Smith, T. Hong, D.J. Srolovitz, Phys. Rev. Lett. 72, 4021 (1994)

  57. J. Purton, S.C. Parker, D.W. Bullett, J. Phys. Condens. Matter 9, 5709 (1997)

  58. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

  59. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

  60. M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50, 45 (1984)

  61. J.A. Moriarty, R. Phillips, Phys. Rev. Lett. 66, 3036 (1990)

  62. J. Tersoff, Phys. Rev. B 38, 9902 (1988)

  63. T. Ochs, O. Beck, C. Elsässer, B. Meyer, Phil. Mag. A 80, 351 (2000)

  64. J.H. Harding, Rep. Prog. Phys. 53, 1403 (1990)

  65. B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958)

  66. C. Elsässer, A.G. Marinopoulos, Acta Mater. 49, 2951 (2001)

  67. E. Heifets, E.A. Kotomin, R. Orlando, J. Phys. Condens. Matter 8, 6577 (1996)

  68. K. Iwahori, S. Watanabe, T. Komeda, M. Kawai, A. Saito, Y. Kuwahara, M. Aono, Jpn. J. Appl. Phys. 38, 3946 (1999)

  69. H.B. Moon, J.H. Cho, J.S. Ahn, J. Kor. Phys. Soc. 47, S251 (2005)

  70. www.abinit.org; the ABINIT code is a common project of the Universite Catholique de Louvain, Corning Inc. and other contributors

  71. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

  72. S. Gemming, M. Schreiber, Chem. Phys. 309, 3 (2005)

  73. S. Gemming, G. Seifert, Acta Mater. (2006)

  74. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

  75. A.M. Kadomtseva, Yu. F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase Trans. 79, 1019 (2006)

  76. K. Sawada, N. Nagaosa, Phys. Rev. Lett. 95, 237402 (2005)

  77. K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999)

  78. I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999)

  79. H. Eschrig, K. Koepernik, I. Chaplygin, J. Solid State Chem. 176, 482 (2003)

  80. R.C. Rai, J. Cao, S. Brown, J.L. Musfeldt, D. Kasinathan, D.J. Singh, G. Lawes, N. Rogado, R.J. Cava, X. Wei, Phys. Rev. B 74, 235101 (2006)

  81. P.W. Anderson, in Magnetism, Vol. 1, edited by G.T. Rado and H. Suhl (Academic Press, New York, 1963), p. 25

  82. L. Capriotti, A. Cuccoli, V. Tognetti, P. Verruchi, R. Vaia, Phys. Rev. B 60, 7299 (1999)

  83. L. Capriotti, R. Vaia, A. Cuccoli, V. Tognetti, Phys. Rev. B 58, 273 (1998)

  84. Gaussian; Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian Inc., Wallingford CT, 2004)

  85. J. Fabian, Theo. Chem. Acc. 106, 199 (2001)

  86. M. Laicini, P. Spearman, S. Tavazzi, A. Borghesi, Phys. Rev. B 71, 045212 (2005)

  87. A. Ozawa, K. Takmiya, T. Otsubo, T. Kobayashi, Chem. Phys. Lett. 409, 224 (2005)

  88. D. Rohde, L. Dunsch, A. Tabet, H. Hartmann, J. Phys. Chem. B 110, 8223 (2006)

  89. Y. Gao, C.G. Liu, Y.S. Liang, J. Phys. Chem. A 106, 5380 (2002)

  90. S.A. McGill, S.G. Rao, P. Manandhar, P. Xiong, S. Hong, Appl. Phys. Lett. 89, 163123 (2006)

  91. Z. Guo, P.J. Sadler, S.C. Tsang, Adv. Mater. 10, 701 (1998)

  92. D. Nepal, J.-I. Sohn, W.K. Aicher, S. Lee, K.E. Geckeler, Biomacromolecules 6, 2919 (2005)

  93. S.R. Vogel, M.M. Kappes, F. Hennrich, C. Richert, Chem. Eur. J. 13, 1815 (2007)

  94. T. Okada, T. Kaneko, R. Hatekeyama, K. Tohji, Chem. Phys. Lett. 417, 288 (2006)

  95. M.J. O'Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)

  96. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003)

  97. X. Huang, R.S. Mclean, M. Zheng, Anal. Chem. 77, 6225 (2005)

  98. A.N. Enyashin, S. Gemming, G. Seifert, Nanotechnology (accepted)

  99. S.R. Lustig, A. Jagota, C. Khripin, M. Zheng, J. Phys. Chem. B 109, 2559 (2005)

  100. H. Gao, Y. Kong, D. Cui, C.S. Ozkan, Nano Lett. 3, 471 (2003)

  101. E.Y. Lau, F.C. Lightstone, M.E. Colvin, Chem. Phys. Lett. 412, 82 (2005)

  102. G. Lu, P. Maragakis, E. Kaxiras, Nano Lett. 5, 897 (2005)

  103. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

  104. J. Tersoff, R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994)

  105. M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 39, 1251 (2001)

  106. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nature 433, 476 (2005)

  107. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949)

  108. J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)

  109. R. Scholz, A.Y. Kobitski, D.R.T. Zahn, M. Schreiber, Phys. Rev. B 72, 245208 (2005); H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992)

  110. L. Onsager, Phys. Rev. 65, 117 (1944)

  111. C.N. Yang, Phys. Rev. 85, 808 (1952)

  112. C. Domb, P. Sykes, Proc. R. Soc. Lond. A 240, 214 (1957)

  113. C. Loppacher, U. Zerweck, L.M. Eng, S. Gemming, G. Seifert, C. Olbrich, K. Morawetz, M. Schreiber, Nanotechnology 17, 1568 (2006)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gemming, S., Luschtinetz, R., Chaplygin, I. et al. Polymorphism in ferroic functional elements. Eur. Phys. J. Spec. Top. 149, 145–171 (2007). https://doi.org/10.1140/epjst/e2007-00248-x

Download citation

Keywords

  • Manganite
  • European Physical Journal Special Topic
  • Cluster Size Distribution
  • Spin Arrangement
  • Gate Element