Advertisement

The European Physical Journal Special Topics

, Volume 149, Issue 1, pp 43–56 | Cite as

Finding polymorphic structures during vicinal surface growth

From island nucleation to step-flow instabilities
  • M.H. Radke de Cuba
  • H. Emmerich
  • S. Gemming
Article

Abstract.

A hybrid scheme is developed to describe vicinal surface growth during epitaxy on two different time and length scales. For this purpose this algorithm combines two modules based on a continuum and an atomistic approach. The continuum module is realized by a phase-field-model which traces back to the Burton–Cabrera–Frank theory, the atomistic module is based on the anisotropic Ising model which is mapped onto a lattice-gas model. The latter provides thermal density fluctuations resulting in adatom clustering. With increasing temperature the probability for island nucleation on the terraces decreases according to 1-p where p is an Arrhenius-type activation probability which prevents clusters from becoming islands. Within this framework it is possible to find the transition from a rough surface at low temperatures to an evenly stepped surface at high temperatures where slight step meandering is observed. Furthermore two competing mechanisms of step bunching are investigated within this scale bridging algorithm: alternating anisotropic diffusion and different Ehrlich–Schwoebel barriers at the step edges. It is shown that a simulation of step bunching displaying the full variety of phenomena observed in experiments can only be achieved by the consideration of different time and length scales.

Keywords

European Physical Journal Special Topic Hybrid Scheme Step Edge Island Nucleation Step Bunching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Tejedor, P. Šmilauer, B.A. Joyce, Surf. Sci. 424, L309 (1999) Google Scholar
  2. P. Tejedor, M.L. Crespillo, B.A. Joyce, Mater. Sci. Eng. C 26, 852 (2006) Google Scholar
  3. B.Z. Nosho, B.R. Bennett, E.H. Aifer, M. Goldenberg, J. Cryst. Growth 236, 155 (2002) Google Scholar
  4. D.D. Vvedensky, S. Clarke, K.J. Hugill, M.R. Wilby, T. Kawamura, J. Cryst. Growth 99, 54 (1990) Google Scholar
  5. V.I. Trofimov, H.S. Park, Thin Solid Films 428, 170 (2003) Google Scholar
  6. Y. Horikoshi, Handbook of Crystal Growth, Vol. 3, edited by D.T.J. Hurle (Elsevier Science B.V., Amsterdam, 1994), p. 691 Google Scholar
  7. G. Ehrlich, F.G. Hudda, J. Chem. Phys. 44, 1039 (1966) Google Scholar
  8. R.L. Schwoebel, E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966) Google Scholar
  9. J. Mysliveček, C. Schelling, F. Schäffler, G. Springholz, P. Šmilauer, J. Krug, B. Voigtländer, Surf. Sci. 520, 193 (2002) Google Scholar
  10. J. Mysliveček, C. Schelling, F. Schäffler, G. Springholz, P. Šmilauer, J. Krug, B. Voigtländer, Mat. Res. Soc. Symp. Proc. 749 (2003) Google Scholar
  11. S. Clarke, M.R. Wilby, D.D. Vvedensky, Surf. Sci. 255, 91 (1991) Google Scholar
  12. B. Voigtländer, T. Weber, P. Šmilauer, D.E. Wolf, Phys. Rev. Lett. 81, 2164 (1997) Google Scholar
  13. W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. London. Ser. A 243, 299 (1951) Google Scholar
  14. G.S. Bales, A. Zangwill, Phys. Rev. B 41, 5500 (1990) Google Scholar
  15. H. Emmerich, Phys. Rev. B 65, 233406 (2002) Google Scholar
  16. H. Emmerich, Ch. Eck, Cont. Mech. Thermodyn. 17, 373 (2006) Google Scholar
  17. T.P. Schulze, P. Smereka, E. Weinan, J. Comput. Phys. 189, 197 (2003) Google Scholar
  18. T.P. Schulze, J. Cryst. Growth 263, 605 (2004) Google Scholar
  19. G. Russo, L.M. Sander, P. Smereka, Phys. Rev. B 69, 121406(R) (2004) Google Scholar
  20. M.H. Radke de Cuba, H. Emmerich, S. Gemming, Physica D (submitted) Google Scholar
  21. M.H. Radke de Cuba, H. Emmerich, S. Gemming, Z. Anorg. Allg. Chem. 632, 2144 (2006) Google Scholar
  22. H. Emmerich, The Diffuse Interface Approach in Material Science: Thermodynamic Concepts and Applications of Phase-Field Models, Lect. Notes Phys. 73 (Springer, Berlin, 2003) Google Scholar
  23. H. Emmerich, Cont. Mech. Thermodyn. 15, 197 (2003) Google Scholar
  24. T. Ihle, H. Müller-Krumbhaar, Phys. Rev. Lett. 70, 3083 (1993) Google Scholar
  25. F. Liu, H. Metiu, Phys. Rev. E 49, 2601 (1994) Google Scholar
  26. A. Karma, M. Plapp, Phys. Rev. Lett. 81, 4444 (1998) Google Scholar
  27. E. Ising, Z. Phys. 31, 253 (1925) Google Scholar
  28. Ch. Loppacher, U. Zerweck, L.M. Eng, S. Gemming, G. Seifert, C. Olbrich, K. Morawetz, M. Schreiber, Nanotechnology 17, 1568 (2006) Google Scholar
  29. C. Olbrich, Bachelor Thesis, TU Chemnitz, 2004 Google Scholar
  30. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) Google Scholar
  31. E. Stoll, K. Binder, T. Schneider, Phys. Rev. B 8, 3266 (1973) Google Scholar
  32. J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976) Google Scholar
  33. R.-F. Xiao, J.I.D. Alexander, F. Rosenberger, Phys. Rev. A 39, 6397 (1989) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • M.H. Radke de Cuba
    • 1
  • H. Emmerich
    • 1
  • S. Gemming
    • 2
  1. 1.Computational Materials Engineering, Center for Computational Engineering Science, Institute of Minerals Engineering, RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Ion-Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations