Advertisement

The European Physical Journal Special Topics

, Volume 149, Issue 1, pp 19–26 | Cite as

Estimation of critical dislocation distances

A quantitative study beyond BCF theory
  • G. Krishnamoorthy
  • H. Emmerich
  • V. Chalupecký
Article

Abstract.

This paper describes in detail quantitative studies of the spiral mode of crystal growth, particularly focussing on the critical dislocation distance between two spirals rotating in opposite direction using the model derived in (Cont. Mech. Thermodynamics 17, 373 (2006)) from the classical BCF model presented in (Philos. Trans. R. Soc. London Ser. A 243, 299 (1951)). Based on our numerical studies we can show that the critical dislocation distance is a function of the diffusion coefficient and the temperature coupling constant as well as a function of the desorption rate. However, it is not a function of the flux rate.

Keywords

European Physical Journal Special Topic Screw Dislocation Liquid Phase Epitaxy Desorption Rate Spiral Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-K. Zuo, J.F. Wendelken, Phys. Rev. Lett. 78, 2791 (1997); H.-J. Ernst et al., ibid. 72, 112 (1994); L.C. Jorritsma et al., ibid. 78, 911 (1997); J.A. Stroscio et al., ibid. 75, 4246 (1997); J.E. Van Nostrand et al., ibid. 74, 1127 (1995) Google Scholar
  2. G.S. Bales, A. Zangwill, Phys. Rev. B 41, 5500 (1990); O. Pierre-Louis, M.R. D'Orsogna, T.L. Einstein, Phys. Rev. Lett. 82, 3661 (1999); H. Emmerich et al., J. Phys. Condens. Matter 11, 9985 (1999); H. Emmerich, Phys. Rev. B 65, 233406 (2002) Google Scholar
  3. J. Krug, Origins of Scale Invariance in Growth Processes, FZ Jülich, Technical Report Jül-3031 (1995), and references therein Google Scholar
  4. H. Emmerich, Ch. Eck, Cont. Mech. Thermodyn. 17, 373 (2006) Google Scholar
  5. W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. London Ser. A 243, 299 (1951) Google Scholar
  6. H.-C. Jeong, E.D. Williams, Surf. Sci. 171, 47 (1999), and references therein Google Scholar
  7. H. Emmerich, The Diffuse Interface Approach in Material Science – Thermodynamic Concepts and Applications of Phase-Field Models, Lect. Notes Phys. 73 (2003) Google Scholar
  8. E. Bauser, H.P. Strunk, J. Cryst. Growth 69, 561 (1984) Google Scholar
  9. G. Springholz, A.Y. Ueta, N. Frank, G. Bauer, Appl. Phys. Lett. 69, 2822 (1996) Google Scholar
  10. M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton, Science 251, 1587 (1991) Google Scholar
  11. S. Kodambakka, S.V. Khare, W. Sweich, K. Ohmori, I. Petrov, J.E. Greene, Nature 429, 49 (2004) Google Scholar
  12. B.W. Lagow et al., Mater. Sci. Eng. A 309–310, 445 (2001) Google Scholar
  13. V. Bulatov, F.F. Abraham, L. Kublin, B. Devincre, S. Yip, Nature 391, 669 (1998) Google Scholar
  14. A.R. Verma, S. Amelinckx, Nature 167, 939 (1951) Google Scholar
  15. F.C. Frank, Disc. Farad. Soc. 5, 48 (1949) Google Scholar
  16. A. Karma, M. Plapp, Phys. Rev. Lett. 81, 4444 (1998) Google Scholar
  17. I.S. Aranson, A.R. Bishop, I. Daruka, V.M. Vinokur, Phys. Rev. Lett. 80, 1770 (1998) Google Scholar
  18. T.P. Schulze, R.V. Kohn, Physica D 132, 520 (1999) Google Scholar
  19. A.A. Chernov, Contem. Phys. 30, 251 (1989) Google Scholar
  20. A.A. Chernov, J. Lewis, J. Phys. Chem. Solids 28, 2185 (1967) Google Scholar
  21. P. Smereka, Physica D 138, 282 (2000) Google Scholar
  22. N. Cabrera, R.V. Coleman, The Art of Science of Growing Crystals, edited by J.J. Gilman (John Wiley, New York, 1963) Google Scholar
  23. T. Surek, J.P. Hirth, G.M. Pound, J. Cryst. Growth 18, 20 (1973) Google Scholar
  24. J.P. Van der Eerden, J. Cryst. Growth 53, 305 (1981) Google Scholar
  25. F. Liu, H. Metiu, Phys. Rev. E 49, 2601 (1994) Google Scholar
  26. Ch. Eck, H. Emmerich, Analysis, Modelling and Simulation of Multiscale Problems, Preprint 146 (2004), http://www.mathematik.uni-stuttgart.de/ mehrskalen/ Google Scholar
  27. R.-F. Xiao, J. Iwan, D. Alexander, F. Rosenberger, Phys. Rev. A 43, 2977 (1991) Google Scholar
  28. A.A. Chernov, J. Cryst. Growth 24–25, 11 (1974) Google Scholar
  29. D.A. Potter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman and Hall, London, 1992), pp. 92–105 Google Scholar
  30. M. Meixner, Dissertation, TU Berlin, 2002, pp. 49–52 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • G. Krishnamoorthy
    • 1
  • H. Emmerich
    • 1
  • V. Chalupecký
    • 2
  1. 1.Computational Materials Engineering, Center for Computational Engineering Science, Institute of Minerals Engineering, RWTH Aachen UniversityAachenGermany
  2. 2.Department of MathematicsFaculty of Nuclear Science and Physical Engineering, Czech Technical University in PraguePragueCzech Republic

Personalised recommendations