Advertisement

The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 127–132 | Cite as

Zero modes of various graphene configurations from the index theorem

  • J. K. PachosEmail author
  • A. Hatzinikitas
  • M. Stone
Article

Abstract.

In this article we consider a graphene sheet that is folded in various compact geometries with arbitrary topology described by a certain genus, g. While the Hamiltonian of these systems is defined on a lattice one can take the continuous limit. The obtained Dirac-like Hamiltonian describes well the low energy modes of the initial system. Starting from first principles we derive an index theorem that corresponds to this Hamiltonian. This theorem relates the zero energy modes of the graphene sheet with the topology of the compact lattice. For g=0 and g=1 these results coincide with the analytical and numerical studies performed for fullerene molecules and carbon nanotubes while for higher values of g they give predictions for more complicated molecules.

Keywords

Fullerene Graphene Sheet European Physical Journal Special Topic Dirac Operator Zero Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984) Google Scholar
  2. J. Tworzydlo, B. Trauzettel, M. Titov, C.W. Beenakker, cond-mat/0603315 Google Scholar
  3. J. González, F. Guinea, M.A. Vozmediano, Phys. Rev. Lett. 69, 172 (1992) Google Scholar
  4. J. González, F. Guinea, M.A. Vozmediano, Nucl. Phys. B 406, 771 (1993) Google Scholar
  5. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000); Phys. Rev. B 69, 035406 (2004) Google Scholar
  6. D.V. Kolesnikov, V.A. Osipov, Eur. Phys. J. B 49, 465 (2006); V.A. Osipov, E.A. Kochetov, JEPT 73, 631 (2001) Google Scholar
  7. M.F. Atiyah, I.M. Singer, Ann. Math. 87, 485 (1968); Ann. Math. 87, 546 (1968); Ann. Math. 93, 119 (1971); Ann. Math. 98, 139 (1971); M.F. Atiyah, G.B. Sigal, Ann. Math. 87, 531 (1968) Google Scholar
  8. T. Eguchi, P.B. Gilkey, A.J. Hanson, Phys. Rep. 66, 215 (1980) Google Scholar
  9. M. Stone, Ann. Phys. 155, 56 (1984) Google Scholar
  10. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985); R.F. Curl, R.E. Smalley, Sci. Am. 265, 54 (1991) Google Scholar
  11. S. Reich, C. Thomsen, P. Ordejón, Phys. Rev. B 65, 155411 (2002) Google Scholar
  12. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984) Google Scholar
  13. A.M.J. Schakel, G.W. Semenoff, Phys. Rev. Lett. 66, 2653 (1991) Google Scholar
  14. R. Jackiw, Phys. Rev. D 29, 2375 (1984) Google Scholar
  15. X.G. Wen, Q. Niu, Phys. Rev. B 41, 9377 (1990) Google Scholar
  16. M. Alimohammadi, H.M. Sadjadi, J. Phys. A: Math. Gen. 32, 4433 (1999) Google Scholar
  17. S. Coleman, The Unity of the Fundamental Interactions (Plenum Press, New York, 1983) Google Scholar
  18. D.V. Vassilevich, Phys. Rept. 388, 279 (2003) Google Scholar
  19. S. Samuel, Int. J. Mod. Phys. B 7, 3877 (1993) Google Scholar
  20. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Physics and Astronomy, University of LeedsLeedsUK
  2. 2.School of Sciences, University of AegeanSamosGreece
  3. 3.Department of PhysicsUniversity of IllinoisW. Green St. UrbanaUSA

Personalised recommendations