Advertisement

The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 83–89 | Cite as

A cosmological model for corrugated graphene sheets

  • A. CortijoEmail author
  • M. A.H. Vozmediano
Article

Abstract.

Defects play a key role in the electronic structure of graphene layers flat or curved. Topological defects in which an hexagon is replaced by an n-sided polygon generate long range interactions that make them different from vacancies or other potential defects. In this work we review previous models for topological defects in graphene. A formalism is proposed to study the electronic and transport properties of graphene sheets with corrugations as the one recently synthesized. The formalism is based on coupling the Dirac equation that models the low energy electronic excitations of clean flat graphene samples to a curved space. A cosmic string analogy allows to treat an arbitrary number of topological defects located at arbitrary positions on the graphene plane. The usual defects that will always be present in any graphene sample as pentagon–heptagon pairs and Stone-Wales defects are studied as an example. The local density of states around the defects acquires characteristic modulations that could be observed in scanning tunnel and transmission electron microscopy.

Keywords

Fullerene Graphene Sheet Dirac Equation European Physical Journal Special Topic Cosmic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, A.A. Firsov, Nature 438, 197 (2005) Google Scholar
  2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) Google Scholar
  3. P.R. Wallace, Phys. Rev. 71, 622 (1947); J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958) Google Scholar
  4. G.V. Semenoff, Phys. Rev. Lett. 53, 2449 (1984); D.V. Khveshchenko, Phys. Rev. Lett. 87, 48246802 (2001); ibid., Phys. Rev. Lett. 87, 48246802 (2001) Google Scholar
  5. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992); ibid., Nucl. Phys. B 406, 771 (1993) Google Scholar
  6. J. González, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993) Google Scholar
  7. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006) Google Scholar
  8. See the contribution by A.K. Geim in this volume Google Scholar
  9. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 16801 (2006) Google Scholar
  10. A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006) Google Scholar
  11. D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006) Google Scholar
  12. A. Cortijo, M.A.H. Vozmediano, preprint cond-mat/0603717 (2006) (to be published) Google Scholar
  13. A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B (2006) (in press) Google Scholar
  14. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Nature 430, 870 (2004) Google Scholar
  15. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996) Google Scholar
  16. N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, D. Tomanek, Phys. Rev. Lett. 91, 237204 (2003) Google Scholar
  17. A.V. Rode, E.G. Gamaly, A.G. Christy, J.G. FitzGerald, S.T. Hyde, R.G. Elliman, B. Luther-Davies, A.I. Veinger, J. Androulakis, J. Giapintzakis, Phys. Rev. B 70, 054407 (2004) Google Scholar
  18. M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994) Google Scholar
  19. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388, 451 (1997) Google Scholar
  20. S. Iijima, T. Ichihashi, Y. Ando, Nature 356, 776 (1992) Google Scholar
  21. H. Terrones, M. Terrones, J.L. Morán-López, Curr. Sci. 81, 1011 (2001) Google Scholar
  22. J.A. Jaszczaka, G.W. Robinson, S. Dimovskic, Y. Gogotsic, Carbon 41, 2085 (2003) Google Scholar
  23. B. An, S. Fukuyama, K. Yokogawaa, M. Yoshimura, M. Egashira, Y. Korai, I. Mochida, Appl. Phys. Lett. 78, 3696 (2001) Google Scholar
  24. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004) Google Scholar
  25. A. Cortijo, M.A.H. Vozmediano, Proceedings of the 14th European Conference for Mathematics in Industry (Springer-Verlag, 2006) preprint cond-mat/0603717 (to appear) Google Scholar
  26. V.A. Osipov, D.V. Kolesnikov, Rom. J. Phys. 50, 457 (2005) Google Scholar
  27. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000) Google Scholar
  28. A.N. Aliev, M.H. Ortacsu, N. Ozdemir, Class. Quantum. Grav. 14 (1997) Google Scholar
  29. N.D. Birrell, P.C.W. Davis, Quantum Fields in Curved Space (Cambridge University Press, 1982) Google Scholar
  30. A. Cortijo, M.A.H. Vozmediano (in progress) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de MadridMadridSpain
  2. 2.Universidad Carlos III de Madrid, Avenida de la Universidad 30MadridSpain

Personalised recommendations