Advertisement

The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 55–61 | Cite as

Impurity scattering, Friedel oscillations and RKKY interaction in graphene

  • V. V. CheianovEmail author
Article

Abstract.

We investigate Friedel Oscillations (FO) surrounding a point scatterer in graphene. We find that the long-distance decay of FO depends on the symmetry of the scatterer. In particular, the FO of the charge density around a Coulomb impurity show a faster, δρ∼1/ r3, decay than in conventional 2D electron systems. In contrast, the FO of the exchange field which surrounds atomically sharp defects breaking the hexagonal symmetry of the honeycomb lattice decay according to the 1/r2 law. We discuss the consequences of these findings for the temperature dependence of the resistivity of the material and the RKKY interaction between magnetic impurities.

Keywords

European Physical Journal Special Topic Magnetic Impurity Coulomb Scatterer RKKY Interaction Graphene Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Friedel, Phil. Mag. 43, 153 (1952) Google Scholar
  2. K.H. Lau, W. Kohn, Surf. Sci. 75, 69 (1978) Google Scholar
  3. G. Zala, B.N. Narozhny, I.L. Aleiner, Phys. Rev. B 64, 214204 (2001); ibid. 64, 201201 (2001); ibid. B 65, 020201 (2002) Google Scholar
  4. S.D. Sarma, E.H. Hwang, Phys. Rev. Lett. 83, 164 (1999); Phys. Rev. B 69, 195305 (2004) Google Scholar
  5. A.M. Rudin, I.L. Aleiner, L.I. Glazman, Phys. Rev. B 55, 9322 (1997) Google Scholar
  6. F. Stern, Phys. Rev. Lett. 44, 1469 (1980); A. Gold, V.T. Dolgopolov, Phys. Rev. B 33, 1076 (1986) Google Scholar
  7. Y.Y. Proskuryakov et al., Phys. Rev. Lett. 89, 076406 (2002); Z.D. Kvon et al., Phys. Rev. B 65, 161304 (2002); A.A. Shashkin et al., Phys. Rev. B 66, 073303 (2002); V.M. Pudalov et al., Phys. Rev. Lett. 91, 126403 (2003); S.A. Vitkalov et al., Phys. Rev. B 67, 113310 (2003) Google Scholar
  8. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957) Google Scholar
  9. K.S. Novoselov et al., Science 306, 666 (2004); K.S. Novoselov et al., Nature 438, 197 (2005) Google Scholar
  10. Y. Zhang et al., Nature 438, 201 (2005); Y. Zhang et al., Phys. Rev. Lett. 94, 176803 (2005) Google Scholar
  11. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006); T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006) Google Scholar
  12. E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006) Google Scholar
  13. I.L. Aleiner, K.B. Efetov, cond-mat/0607200 Google Scholar
  14. Corners of the hexagonal Brilloin zone are \(\mathbf{K} _{\xi }=\xi ({\textstyle\frac{4}{3}}\pi a^{-1},0)\), where ξ=± 1 and a is the lattice constant. In the basis [ φ $K_+,A$ , φ $K_+,B$ , φ $K_-,B$ , φ $K_-,A$ , time reversal, T(W) of an operator W is described by \(T(\hat{W })=(\mathrm{\Pi}_{x}\otimes \sigma _{x}){W}^{\ast }(\mathrm{\Pi}_{x}\otimes \sigma _{x})\). This can be used to show that T(Σs)=-Σs, T(Λl)=-Λl, and T(ΣsΛ l)=ΣsΛl Google Scholar
  15. E. Fradkin, Phys. Rev. B 33, 3257 (1986); E. McCann, V.I. Fal'ko, Phys. Rev. B 71, 085415 (2005); M. Foster, A. Ludwig, Phys. Rev. B 73, 155104 (2006) Google Scholar
  16. S.V. Morozov et al., Phys. Rev. Lett. 97, 016801 (2006) Google Scholar
  17. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998) Google Scholar
  18. V. Cheianov, V.I. Fal'ko, Phys. Rev. B 74, 041403 (2006) Google Scholar
  19. T. Ando, A. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982) Google Scholar
  20. The 1/r2 FO in a gas of relativistic 2D fermions vanish in the massless limit. See D.H. Lin, Phys. Rev. A 73, 044701 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Physics DepartmentLancaster UniversityLancasterUK

Personalised recommendations