The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 27–37 | Cite as

Manifestations of phase-coherent transport in graphene

The Josephson effect, weak localization, and aperiodic conductance fluctuations
  • H. B. Heersche
  • P. Jarillo-Herrero
  • J. B. Oostinga
  • L. M.K. Vandersypen
  • A. F. MorpurgoEmail author


The electronic transport properties of graphene exhibit pronounced differences from those of conventional two dimensional electron systems investigated in the past. As a consequence, well established phenomena such as the integer quantum Hall effect and weak localization manifest themselves differently in graphene. Here we present an overview of recent experiments that we have performed to probe phase coherent transport. In particular, we have investigated in great detail Josephson supercurrent and superconducting proximity effect in junctions consisting of a graphene layer in between superconducting electrodes. We have also used the same devices to measure aperiodic conductance fluctuations and weak localization. The experimental results clearly indicate that low-temperature transport in graphene is phase coherent on a ∼ 1μm length scale, irrespective of the position of the Fermi level. We discuss the different behavior of Josephson supercurrent and weak localization in terms of the unusual properties of the electronic states in graphene upon time reversal symmetry.


European Physical Journal Special Topic Gate Voltage Josephson Junction Dirac Point Weak Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K.S. Novoselov et al., Science 306, 666 (2004) Google Scholar
  2. K.S. Novoselov et al., Nature 438, 197 (2005) Google Scholar
  3. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) Google Scholar
  4. S.V. Morozov et al., Phys. Rev. Lett. 97, 016801 (2006) Google Scholar
  5. C. Berger et al., Science 312, 1191 (2006) Google Scholar
  6. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, Singapore, 1996) Google Scholar
  7. P. Joyez, P. Lafarge, A. Filipe, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 72, 2458 (1994) Google Scholar
  8. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (John Wiley & Sons, New York, 1982) Google Scholar
  9. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996) Google Scholar
  10. K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979) Google Scholar
  11. M. Titov, C.W.J. Beenakker, Phys. Rev. B 74, 041401(R) (2006) Google Scholar
  12. B.L. Altshuler, P.A. Lee, R.A. Webb, Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991) Google Scholar
  13. J.A. Folk et al., Phys. Rev. Lett. 76, 1699 (1996) Google Scholar
  14. A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006) Google Scholar
  15. H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002) Google Scholar
  16. E. McCann et al., Phys. Rev. Lett. 97, 146805 (2006) Google Scholar
  17. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) Google Scholar
  18. M.V. Berry, R.J. Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • H. B. Heersche
    • 1
  • P. Jarillo-Herrero
    • 1
  • J. B. Oostinga
    • 1
  • L. M.K. Vandersypen
    • 1
  • A. F. Morpurgo
    • 1
    Email author
  1. 1.Kavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations