The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 19–26 | Cite as

Graphene field-effect devices

  • T. J. EchtermeyerEmail author
  • M. C. Lemme
  • J. Bolten
  • M. Baus
  • M. Ramsteiner
  • H. Kurz


In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).


European Physical Journal Special Topic Carrier Mobility Raman Intensity Monolayer Graphene Single Layer Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G.E. Moore, Electronics 38, 114 (1965) Google Scholar
  2. R.H. Dennard, F. Gaensslen, L. Kuhn, H. Yu, Tech. Dig. IEDM, 344 (1972) Google Scholar
  3. G. Baccarani, M.R. Wordeman, R.H. Dennard, IEEE Trans. Electr. Dev. 31, 452 (1984) Google Scholar
  4. P. Packan, Science 285, 2079 (1999) Google Scholar
  5. Y.-M. Lin, J. Appenzeller, Z.H. Chen, Z.G. Chen, H.-M. Cheng, P. Avouris, IEEE Electr. Dev. Lett. 26, 823 (2005) Google Scholar
  6. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic, IEEE Trans. Nanotechnol. 4, 153 (2005) Google Scholar
  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) Google Scholar
  8. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) Google Scholar
  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005) Google Scholar
  10. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006) Google Scholar
  11. M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, IEEE Electr. Dev. Lett. 28, (2007) Google Scholar
  12. S. Banerjee, M. Sardar, N. Gayathri, A.K. Tyagi, B. Raj, Appl. Phys. Lett. 88, 06211 (2006) Google Scholar
  13. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006) Google Scholar
  14. R.J. Nemanich, C.C. Tsai, G.A.N. Connell, Phys. Rev. Lett. 44, 273 (1980) Google Scholar
  15. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000) Google Scholar
  16. S.-I. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electr. Dev. 41, 2357 (1994) Google Scholar
  17. Z. Ren, Tech. Dig. IEDM, 51 (2002) Google Scholar
  18. K. Uchida, S.-I. Takagi, Appl. Phys. Lett. 82, 2916 (2003) Google Scholar
  19. G. Tsutsui, T. Hiramoto, IEEE Trans. Electr. Dev. 53, 2582 (2006) Google Scholar
  20. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • T. J. Echtermeyer
    • 1
    Email author
  • M. C. Lemme
    • 2
  • J. Bolten
    • 2
  • M. Baus
    • 1
  • M. Ramsteiner
    • 3
  • H. Kurz
    • 1
    • 2
  1. 1.Institute of Semiconductor Electronics, RWTH Aachen UniversityAachenGermany
  2. 2.Advanced Microelectronic Center Aachen (AMICA), AMO GmbH, Otto-Blumenthal-Str. 25AachenGermany
  3. 3.Paul-Drude Institute for Solid State ElectronicsBerlinGermany

Personalised recommendations