Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 443–457 | Cite as

On the mechanics of deformation instabilities in carbon nanotubes

  • D. Walgraef
Article

Abstract.

This paper reviews some of the main mechanical properties of carbon nanotubes (CNT), including nonlinear elastic instabilities and buckling, as well as defect generation, dynamics and plasticity. A multiscale modeling approach of CNT dynamics is proposed. It considers CNT as cylindrical shells and describes their dynamics through the corresponding elasticity equations. This description may also incorporate defects such as vacancies, adatoms, dislocations, Stone–Wales defects and the coupling between film elasticity and defect dynamics. Elastic constants, defect formation and interaction energies may be obtained from direct comparison with experimental results or numerical simulations at the atomic level. It is then shown how the apparition and properties of deformation instabilities may be discussed in this framework.

Keywords

Carbon Nanotubes Cylindrical Shell Graphene Sheet European Physical Journal Special Topic Circular Cylindrical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.I. Yakobson, R.E. Smalley, Amer. Sci. 85, 324 (1997) Google Scholar
  2. S. Iijima, Nature 354, 56 (1991) Google Scholar
  3. B.I. Yakobson, Ph. Avouris, Topics Appl. Phys. 80 287 (2001) Google Scholar
  4. D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55, 495 (2002) Google Scholar
  5. R.S. Ruoff, D. Qian, W.K. Liu, C. R. Phys. 4, 993 (2003) Google Scholar
  6. X. Zhou, J.-J. Zhou, Z.-C. Ou-Yang, Phys. Rev. B 62, 13692 (2000) Google Scholar
  7. Y. Jin, F.G. Yuan, Compos. Sci. Technol. 63, 1507 (2003) Google Scholar
  8. C.Y. Li, T.-W. Chou, Compos. Sci. Techol. 63, 1517 (2003) Google Scholar
  9. E. Hernandez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998) Google Scholar
  10. L. Chico, R. Parez-Alvarez, C. Cabrillo, Phys. Rev. B 73, 075425 (2006) Google Scholar
  11. T. Vodenitcharova, L.C. Zhang, Phys. Rev. B 68, 165401 (2003) Google Scholar
  12. A. Sears, R.C. Batra, Phys. Rev. B 69, 235406 (2004) Google Scholar
  13. K. Enomoto, S. Kitakata, T. Yasuhara, N. Ohtake, Appl. Phys. Lett. 88, 153115 (2006) Google Scholar
  14. Y. Huang, J. Wu, K.C. Hwang, Phys. Rev. B 74, 245413 (2006) Google Scholar
  15. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science 283, 1513 (1999) Google Scholar
  16. C. Bower, R. Rosen, L. Jin, J. Han, O. Zhoua, Appl. Phys. Lett. 74, 3317 (1999) Google Scholar
  17. D. Srivastava, M. Menon, K. Cho, Phys. Rev. Lett. 83, 2973 (1999) Google Scholar
  18. O. Lourie, D.M. Cox, H.D. Wagner, Phys. Rev. Lett. 81, 1638 (1998) Google Scholar
  19. A. Rochefort, Ph. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999) Google Scholar
  20. M.J. Buehler, Y. Kong, H. Gao, J. Eng. Mater. Tech. 126, 245 (2004) Google Scholar
  21. M.B. Nardelli, B. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998) Google Scholar
  22. M.B. Nardelli, B. Yakobson, J. Bernholc, Phys. Rev. Lett. 81, 4656 (1998) Google Scholar
  23. J. Pieper, J. Goree, R.A. Quinn, J. Vac. Sci. Tech. A 14, 511 (1996) Google Scholar
  24. M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973) Google Scholar
  25. D.R. Nelson, B.I. Halperin, Phys. Rev. B 19, 2457 (1979) Google Scholar
  26. A.P. Young, Phys. Rev. B 19, 1855 (1979) Google Scholar
  27. D. Srivastava, C. Wei, K. Cho, Appl. Mech. Rev. 56, 215 (2003) Google Scholar
  28. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Phys. Rev. B 70, 245416 (2004) Google Scholar
  29. B.C. Pan, W.S. Yang, J. Yang, Phys. Rev. B 62, 12 652 (2000) Google Scholar
  30. C. Shet, N. Chandra, S. Namilae, Defect-defect Interaction in Carbon Nanotubes Under Mechanical Loading, in Mech. Adv. Mater. Struc. (to appear) Google Scholar
  31. N.M. Ghoniem, H. Heinisch, H. Huang, S. Yip, S.J. Yu, J. Comp. Mater. Design, Special Issue for Multiscale Materials Modeling Symposium of the 5th IUMRS (Kluwer Academic Publishers, Dordrecht, 1999) Google Scholar
  32. E.H. Donnell, Trans. ASME 56, 795-806 (1934) Google Scholar
  33. T. von Kármán, H.S. Tsien, J. Aeronaut. Sci. 8, 303-312 (1941) Google Scholar
  34. I.I. Vorovich, L.P. Lebedev, Nonlinear Theory of Shallow Shells (Springer Verlag, Berlin, 1999) Google Scholar
  35. V.I. Emel'yanov, Laser Phys. 2, 389 (1992) Google Scholar
  36. D. Walgraef, N.M. Ghoniem, J. Lauzeral, Phys. Rev. B 56, 15361 (1997) Google Scholar
  37. J. Lauzeral, D. Walgraef, N.M. Ghoniem, Phys. Rev. Lett. 79, 2706-9 (1997) Google Scholar
  38. D. Walgraef, Proceedings of the 2nd International Conference on Multiscale Materials Modeling, edited by N.M. Ghoniem (UCLA, 2004), p. 604 Google Scholar
  39. A.V. Krasheninnikov, K. Nordlund, J. Keinonen, Phys. Rev. B 65, 165423 (2002) Google Scholar
  40. D. Walgraef, Spatio-Temporal Pattern Formation (Springer Verlag, New York, 1996) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • D. Walgraef
    • 1
  1. 1.Center for Nonlinear Phenomena and Complex Systems, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations