Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 377–389 | Cite as

Some advances in lubrication-type theories

  • P. ColinetEmail author
  • H. Kaya
  • S. Rossomme
  • B. Scheid
Article

Abstract.

Lubrication-type theories have turned out to be useful in a wide range of scales, being applied to study the dynamics of liquid films of thicknesses ranging between the millimeter and the nanometer. As they moreover allow a deep physical understanding, and are in some cases amenable to analytical treatment, they provide a powerful tool for studying the transition between regimes affected (or even dominated) by inertia, and regimes dominated by contact forces with a solid, for instance. In this paper, recent results of the authors are presented, focusing on thin liquid films flowing down inclines, ultra-thin films of complex fluids featuring density variations, and evaporating contact lines.

Keywords

Contact Angle Capillary Pressure European Physical Journal Special Topic Contact Line Density Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997) Google Scholar
  2. P. Kapitza, Zh. Ekper. Teor. Fiz. 18, 3 (1948) Google Scholar
  3. P. Kapitza, S. Kapitza, Zh. Ekper. Teor. Fiz. 19, 105 (1949) Google Scholar
  4. T. Herbert, Ann. Rev. Fluid Mech. 20, 487 (1988) Google Scholar
  5. S. Alekseenko, V. Nakoryakov, B. Pokusaev, Wave Flow in Liquid Films (Begell House, NY, 1994) Google Scholar
  6. C. Ruyer-Quil, P. Manneville, Eur. Phys. J. B 15, 357 (2000) Google Scholar
  7. C. Ruyer-Quil, P. Manneville, Phys. Fluid 14, 170 (2002) Google Scholar
  8. K.D.F. Wensink, B. Jérôme, Langmuir 18, 413 (2002) Google Scholar
  9. A. Sharma, J. Mittal, Phys. Rev. Lett. 89, 186101 (2002) Google Scholar
  10. A. Sharma, J. Mittal, R. Verma, Langmuir 18, 10213 (2002) Google Scholar
  11. H. Kaya, B. Jérôme, P. Colinet, Europhys. Lett. 74, 861 (2006) Google Scholar
  12. L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000) Google Scholar
  13. L.M. Pismen, Phys. Rev. E 64, 021603 (2001) Google Scholar
  14. S. Gavrilyuk, I. Akhatov, Phys. Rev. E 73, 021604 (2006) Google Scholar
  15. H. Gouin, J. Phys. Chem. B 102, 1212 (1998) Google Scholar
  16. H.-C. Chang, E. Demekhin, D. Kopelevitch, J. Fluid Mech. 250, 433 (1993) Google Scholar
  17. D. Benney, J. Math. Phys. 45, 150 (1966) Google Scholar
  18. S.W. Joo, S.H. Davis, S.G. Bankoff, J. Fluid Mech. 230, 117 (1991) Google Scholar
  19. B. Scheid, C. Ruyer-Quil, U. Thiele, O. Kabov, J.C. Legros, P. Colinet, J. Fluid Mech. 527, 303 (2005) Google Scholar
  20. H. Schlichting, Boundary-Layer Theory (McGraw-Hill, 1979) Google Scholar
  21. V. Shkadov, Izv. Ak. Nauk SSSR, Mekh. Zhidk Gaza 1, 43 (1967) Google Scholar
  22. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M.G. Velarde, R. Kh. Zeytounian, J. Fluid Mech. 538, 199 (2005) Google Scholar
  23. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M.G. Velarde, R.Kh. Zeytounian, J. Fluid Mech. 538, 223 (2005) Google Scholar
  24. B. Scheid, C. Ruyer-Quil, P. Manneville, J. Fluid Mech. 562, 183 (2006) Google Scholar
  25. J. Liu, J. Schneider, J. Gollub, Phys. Fluids 7, 55 (1995) Google Scholar
  26. V. Ludviksson, E.N. Lightfoot, AIChE J. 14, 620 (1968) Google Scholar
  27. D.A. Goussis, R.E. Kelly, J. Fluid Mech. 223, 25 (1991) Google Scholar
  28. S.W. Joo, S.H. Davis, S.G. Bankoff, J. Fluid Mech. 321, 279 (1996) Google Scholar
  29. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Gouttes, bulles, perles et ondes (Belin, Paris, 2002) Google Scholar
  30. B.V. Derjaguin, Kolloid Z. 69, 155 (1934) Google Scholar
  31. A. Oron, S.G. Bankhoff, J. Coll. Interf. Sci. 218, 152 (1999) Google Scholar
  32. V. Mitlin, J. Coll. Interf. Sci. 153, 491 (1993) Google Scholar
  33. A.L. Bertozzi, G. Grün, T.P. Witelski, Nonlinearity 14, 1569 (2001) Google Scholar
  34. V. Mitlin, J. Colloid Interface Sci. 227, 371 (2000) Google Scholar
  35. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 12, 101 (2004) Google Scholar
  36. M. Rauscher, A. Münch, B. Wagner, R. Blossey, Eur. Phys. J. E 17, 373 (2005) Google Scholar
  37. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nature Mater. 2, 59 (2003) Google Scholar
  38. J.P. Burelbach, S.G. Bankoff, S.H. Davis, J. Fluid Mech. 195, 463 (1988) Google Scholar
  39. P.C. Stephan, C.A. Busse, Int. J. Heat Mass Transfer 35, 383 (1992) Google Scholar
  40. V.S. Ajaev, J. Coll. Interface Sci. 280, 165 (2004) Google Scholar
  41. U. Thiele, Eur. Phys. J. E 12, 409 (2003) Google Scholar
  42. G. Fang, C.A. Ward, Phys. Rev. E 59, 417 (1999) Google Scholar
  43. B. Haut, P. Colinet, J. Coll. Interface Sci. 285, 296 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemical Engineering Dept., Université Libre de Bruxelles CP 165/67BruxellesBelgium

Personalised recommendations