The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 331–340 | Cite as

Convection in a vibrated granular layer

  • A. GarcimartínEmail author
  • J. M. Pastor
  • R. Arévalo
  • D. Maza


When a granular layer is submitted to an oscillating acceleration with a peak value larger than gravity, a large scale motion develops. This movement is in some ways similar to the one displayed by a liquid heated from below, and it is called granular convection. Different conditions beside the parameters of the forcing can affect it, such as the presence of an interstitial gas or the roughness of the walls. We have carried out an experiment to study the convective movement of a granular layer with a temporal resolution high enough to describe the motion of individual grains within one oscillating period. We also present experimental results concerning the friction that the lateral walls exert on the grains and its relevance on granular convection.


Rayleigh Number Lateral Wall European Physical Journal Special Topic Granular Layer Granular Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G.H. Ristow, Pattern Formation in Granular Materials (Springer, Berlin, 2000) Google Scholar
  2. J. Duran, Sables, poudres et grains (Eyrolles, Paris, 1997) Google Scholar
  3. M. Faraday, Philos. Trans. R. Soc. Lond. 52, 299 (1831) Google Scholar
  4. S.B. Savage, J. Fluid Mech. 194, 457 (1988) Google Scholar
  5. P. Evesque, J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989) Google Scholar
  6. E.L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993) Google Scholar
  7. T. Ondarçuhu, J. Millán-Rodríguez, H.L. Mancini, A. Garcimartín, C. Pérez-García, Phys. Rev. E 48, 1051 (1993) Google Scholar
  8. F. Melo, P.B. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 75, 3838 (1995) Google Scholar
  9. C. Laroche, S. Douady, S. Fauve, J. Phys. (France) 50, 699 (1989) Google Scholar
  10. E. Clément, J. Duran, J. Rajchenbach, Phys. Rev. Lett. 69, 1189 (1992) Google Scholar
  11. H.K. Pak, E. Van Doorn, R.P. Behringer, Phys. Rev. Lett. 74, 4643 (1995) Google Scholar
  12. J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 54, 5726 (1996) Google Scholar
  13. R. Ramírez, D. Risso, P. Cordero, Phys. Rev. Lett. 85, 1230 (2000) Google Scholar
  14. A. Garcimartín, D. Maza, J.L. Ilquimiche, I. Zuriguel, Phys. Rev. E 65, 031303-1-5 (2002) Google Scholar
  15. J.M. Pastor, D. Maza, I. Zuriguel, J.-F. Boudet, A. Garcimartín, Physica D (submitted) Google Scholar
  16. W. Kroll, Forschung auf der Gebiete des Ingenieurwesen 20, 2 (1954) Google Scholar
  17. R.G. Gutman, Trans. Instn. Chem. Engrs. 54, 174 (1976) Google Scholar
  18. M.E. Möbius, X. Cheng, P. Eshuis, G.S. Karczmar, S.R. Nagel, H.M. Jaeger, Phys. Rev. E 72, 011304-1-13 (2005) Google Scholar
  19. R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992) Google Scholar
  20. P.C. Carman, Flow of Gases Through Porous Media (Butterworth Scientific, London, 1956) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • A. Garcimartín
    • 1
    Email author
  • J. M. Pastor
    • 1
  • R. Arévalo
    • 1
  • D. Maza
    • 1
  1. 1.Departamento de Física y Matemática AplicadaFacultad de Ciencias, Universidad de NavarraPamplonaSpain

Personalised recommendations