Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 249–259 | Cite as

Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries

Solenoidal spectral formulations
  • A. MeseguerEmail author
  • M. Avila
  • F. Mellibovsky
  • F. Marques
Article

Abstract.

Novel spectral methods are formulated in terms of divergence-free vector fields in order to compute finite amplitude time-dependent solutions of incompressible viscous flows in cylindrical and/or annular geometries. The numerical discretization of the method leads to a simple dynamical system of amplitudes from which the stability properties of the solution can be analyzed easily. In addition, the formulation allows easy implementation of continuation algorithms to track solutions that have bifurcated from a known state, or the search for disconnected solution branches by means of homotopy transformations of the Navier–Stokes equations. The method is succesfully applied to the study of generic double Hopf bifurcations in pressure-driven helicoidal flows and to the search of unstable travelling wave solutions in pipe flow.

Keywords

European Physical Journal Special Topic Couette Flow Streamwise Vortex Pseudospectral Method Recirculation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Andereck, S.S. Liu, H.L. Swinney, J. Fluid. Mech. 164, 155 (1986) Google Scholar
  2. M. Avila, A. Meseguer, F. Marques, Phys. Fluids 18, 064101 (2006) Google Scholar
  3. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 1999) Google Scholar
  4. D.R. Barnes, R.R. Kerswell, J. Fluid. Mech. 417, 103 (2000) Google Scholar
  5. D.J. Benney, R.F. Bergeron, Stud. Appl. Math. 48, 181 (1969) Google Scholar
  6. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, Berlin, 1988) Google Scholar
  7. R.M. Clever, F.H. Busse, J. Fluid Mech. 344, 137 (1997) Google Scholar
  8. A.G. Darbyshire, T. Mullin, J. Fluid Mech. 289, 83 (1995) Google Scholar
  9. H. Faisst, B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003) Google Scholar
  10. B. Fornberg, A Practical Guide for Pseudospectral Methods (Cambridge University Press, Cambridge, 1996) Google Scholar
  11. D. Hof, C.W.H. van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe, Science 305, 1594 (2004) Google Scholar
  12. D.D. Joseph, Stability of Fluid Motions I and II (Springer-Verlag, Berlin, 1976) Google Scholar
  13. G. Karniadakis, M. Israeli, S.A. Orszag, J. Comput. Phys. 97, 414 (1991) Google Scholar
  14. R.R. Kerswell, A. Davey, J. Fluid Mech. 316, 307 (1996) Google Scholar
  15. A. Leonard, A. Wray, Proceedings, 8th Int. Conf. on Numerical Methods in Fluid Dynamics, edited by E. Krause (Springer-Verlag, Berlin, 1982), pp. 335–342 Google Scholar
  16. C.K. Mamun, L.S. Tuckerman, Phys. Fluids 7, 80 (1994) Google Scholar
  17. F. Mellibovsky, A. Meseguer, Phys. Fluids 18, 074104 (2006) Google Scholar
  18. A. Meseguer, F. Marques, J. Fluid Mech. 455, 129 (2002) Google Scholar
  19. A. Meseguer, F. Mellibovsky, Appl. Num. Math. (2006) (in press) Google Scholar
  20. A. Meseguer, L.N. Trefethen, J. Comput. Phys. 186, 178 (2003) Google Scholar
  21. A. Meseguer, F. Marques, Phys. Fluids 17, 094104 (2005) Google Scholar
  22. N. McG. Mhuiris , Appl. Num. Math. 2, 273 (1986) Google Scholar
  23. R.D. Moser, P. Moin, A. Leonard, J. Comput. Phys. 52, 524 (1983) Google Scholar
  24. M. Nagata, J. Fluid Mech. 217, 519 (1990) Google Scholar
  25. P.L. O'Sullivan, K.S. Breuer, Phys. Fluids 6, 3652 (1994) Google Scholar
  26. J. Pretsch, Z. Angew. Math. Mech. 21, 204 (1941) Google Scholar
  27. V.G. Priymak, T. Miyazaki, J. Comput. Phys. 142, 370 (1998) Google Scholar
  28. O. Reynolds, Phil. Trans. R. Soc. Lond. 174, 935 (1883) Google Scholar
  29. H. Salwen, C.E. Grosch, J. Fluid Mech. 54, 93 (1972) Google Scholar
  30. R. Tagg, Nonlinear Sci. Tod. Phys. Fluids 6, 3652 (1994); 4, 1 (1994) Google Scholar
  31. G.I. Taylor, Phil. Trans. R. Soc. Lond. A 223, 289 (1923) Google Scholar
  32. F. Waleffe, Phys. Fluids 9, 883 (1997) Google Scholar
  33. H. Wedin, R.R. Kerswell, J. Fluid Mech. 508, 333 (2004) Google Scholar
  34. I. Wygnanski, F.H. Champagne, J. Fluid Mech. 59, 281 (1973) Google Scholar
  35. I. Wygnanski, M. Sokolov, D. Friedman, J. Fluid Mech. 69, 283 (1975) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • A. Meseguer
    • 1
    Email author
  • M. Avila
    • 1
  • F. Mellibovsky
    • 1
  • F. Marques
    • 1
  1. 1.Dept. Applied Physics, Univ. Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord-B5BarcelonaSpain

Personalised recommendations