The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 217–231 | Cite as

Mechanisms for initiation of cardiac discordant alternans

  • B. Echebarria
  • A. Karma


Electrical alternans, defined as a beat-to-beat change in the duration of the excited phase of cardiac cells, is among the known precursors of sudden cardiac death. It may appear as concordant (all the tissue presenting the same phase of oscillation) or discordant (with out-of-phase regions distributed among tissue). Spatially discordant alternans can lead to unidirectional block that initiates reentry and ventricular fibrillation. The role played by tissue heterogeneities and heart rate changes in their initiation remains, however, unclear. We study the mechanisms for initiation of spatially discordant alternans by numerical simulations of an ionic model spatially distributed in a one-dimensional cable and in an anatomical model of the rabbit heart. The effects of CV-restitution, ectopic beats, and the role of spatial gradients of electrical restitution properties are investigated. In homogeneous tissue, the origin of discordant alternans may be dynamical, through CV-restitution, or due to a localized change in the pacing period. We also find that a sudden change of stimulation rate can initiate discordant alternans in the presence of a spatial gradient of APD-restitution without necessitating CV-restitution. The mechanism of, and the conditions for, initiation are determined based on an iterated map analysis of beat to beat changes of APD. This analysis leads to the definition of a vulnerable window for initiation of discordant alternans. Moreover, the pattern of spatially discordant alternans is found to change slowly over several beats following initiation, as reflected in ECG recordings.


European Physical Journal Special Topic Action Potential Duration Ectopic Beat Pace Rate Diastolic Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Edelstein-Keshet, Mathematical Models in Biology (Classics in Applied Mathematics) (SIAM, 2004) Google Scholar
  2. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) Google Scholar
  3. J.D. Murray, Mathematical Biology 3rd edn. Mathematical Biology: I. An Introduction, 2002; Mathematical Biology: II. Spatial Models and Biomedical Applications (Springer-Verlag, New York, 2003) Google Scholar
  4. G.K. Moe, Arch. Int. Pharmacodyn. Ther. 14, 183 (1982) Google Scholar
  5. J. Jalife, O. Berenfeld, M. Mansour, Cardiovasc. Res. 54, 204 (2002) Google Scholar
  6. P.J. Schwartz, A. Malliani, Am. Heart J. 89, 45 (1975); J.M. Smith, E.A. Clancy, R. Valeri, J.N. Ruskin, R.J. Cohen, Circ. 77, 110 (1988); B. Nearing, A.H. Huang, R.L. Verrier, Science 252, 437 (1991); D.S. Rosenbaum, L.E. Jakson, J.M. Smith, H. Garam, J.N. Ruskin, R.J. Cohen, N. Engl. J. Med. 330, 235 (1994) Google Scholar
  7. T. Lweis, Q. J. Med. 4, 141 (1910) Google Scholar
  8. J.M. Pastore, S.D. Girouard, K.R. Laurita, F.G. Akar, D.S. Rosenbaum, Circ. 99, 1385 (1999) Google Scholar
  9. J.J. Fox, M.L. Riccio, F. Hua, E. Bodenschatz, R.F. Gilmour, Circ. Res. 90, 289 (2002) Google Scholar
  10. Z. Qu, A. Garfinkel, P.-S. Chen, J.W. Weiss, Circ. 102, 1664 (2000) Google Scholar
  11. M.A. Watanabe, F.H. Fenton, S.J. Evans, H.M. Hastings, A. Karma, J. Cardiovasc. Electrophys. 12, 196 (2001) Google Scholar
  12. Z.L. Qu, A. Garfinkel, J.N. Weiss, J. Biophys. 91, 793 (2006); 91, 805 (2006) Google Scholar
  13. A. Karma, Chaos 4, 461 (1994) Google Scholar
  14. J.N. Weiss, A. Karma, Y. Shiferaw, P.S. Chen, A. Garfinkel, Z. Qu, Circ. Res. 98, 1244 (2006) Google Scholar
  15. D.S. Rosenbaum, J. Cardiovasc. Electrophys. 12, 207 (2001) Google Scholar
  16. H. Hayashi et al., J. Biophys. 92, 448 (2007) Google Scholar
  17. J.B. Nolasco, R.W. Dahlen, J. App. Physiol, 25, 191 (1968) Google Scholar
  18. M.R. Guevara, G. Ward, A. Shrier, L. Glass, Computers in Cardiology, IEEE Comp. Soc. (1984), pp. 167 Google Scholar
  19. E. Chudin, J. Goldhaber, A. Garfinkel, J. Weiss, B. Kogan, J. Biophys. 77, 2930 (1999) Google Scholar
  20. Y. Shiferaw, M. Watanabe, A. Garfinkel, J. Weiss, A. Karma, J. Biophys. 85, 3666 (2003) Google Scholar
  21. Y. Shiferaw, D. Sato, A. Karma, Phys. Rev. E 71, 021903 (2005) Google Scholar
  22. J.J. Fox, E. Bodenschatz, R.F. Gilmour, Phys. Rev. Lett. 89, 138101 (2002) Google Scholar
  23. E.M. Cherry, F.H. Fenton, Am. J. Physiol. Heart Circ. Physiol. 286, H2332 (2004) Google Scholar
  24. B. Echebarria, A. Karma, Phys. Rev. Lett. 88, 208101 (2002) Google Scholar
  25. B. Echebarria, A. Karma, Phys. Rev. E, (to appear) Google Scholar
  26. K.R. Laurita, S.D. Girouard, D.S. Rosenbaum, Circ. Res. 79, 493 (1996) Google Scholar
  27. F.J. Vetter, A.D. McCulloch, Prog. Biophys. Mol. Biol. 69, 157 (1998) Google Scholar
  28. G. Bub, L. Glass, N.G. Publicover, A. Shrier, Proc. Natl. Acad. Sci. USA 95, 10283 (1998); J. Freudenberg, T. Schiemann, U. Tiede, K.H. Höhne, Comp. Biol. Med. 30, 191 (2000) Google Scholar
  29. A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again (World Scientific, Singapore, 2005) Google Scholar
  30. F. Fenton, A. Karma, Chaos 8, 20 (1998) Google Scholar
  31. B.J. Roth, IEEE Trans. Biomed. Engg. 44, 326 (1997) Google Scholar
  32. E.G. Tolkacheva, J.M.B. Anumonwo, J. Jalife, J. Biophys. 91, 2735 (2006) Google Scholar
  33. M.S. Panutich, B.P. Knight, J. Cardiovasc. Electrophysiol. 17, 918 (2006) Google Scholar
  34. R.H. Clayton, P. Taggart, BioMed. Eng. Onl. 4, 54 (2005) Google Scholar
  35. M.P. Nash et al., Exp. Physiol. 91, 339 (2006) Google Scholar
  36. J.M. Pastore, K.R. Laurita, D.S. Rosenbaum, Heart Rhythm 3, 711 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • B. Echebarria
    • 1
  • A. Karma
    • 2
  1. 1.Departament de Física AplicadaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Physics and Center for Interdisciplinary Research on Complex SystemsNortheastern UniversityBostonUSA

Personalised recommendations