Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 189–197 | Cite as

Variational principles and the effect of a cutoff on population pattern size

  • V. MéndezEmail author
  • W. Horsthemke
  • J. Casas-Vázquez
  • E. P. Zemskov
Article

Abstract.

The relation between pattern size and maximum population density is obtained for the stationary state of populations living in a refuge surrounded by a hostile environment. The population dynamics is described by reaction–diffusion equations whose kinetic terms display a cutoff. The latter takes into account the discreteness of the population when the population density is small. We employ a variational principle for the nonlinear eigenvalue problem to obtain lower bounds for the pattern length. Numerical solutions display excellent agreement with our analytical results.

Keywords

Variational Principle European Physical Journal Special Topic Bifurcation Point Kinetic Term Travel Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Fisher, Ann. Eugen. 7, 355 (1937); A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, Bull. Univ. Moscow, Ser. Internat., Sect. A 1, 1 (1937) Google Scholar
  2. P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves (Oxford University Press, Oxford, 1996) Google Scholar
  3. J.D. Murray, Mathematical Biology, 3rd edn. (Springer, New York, 2003) Google Scholar
  4. J.G. Skellam, Biometrika 38, 196 (1951) Google Scholar
  5. M. Kot, Elements of Mathematical Ecology (Cambridge University Press, Cambridge, UK, 2003) Google Scholar
  6. J. Smoller, A. Wasserman, J. Diff. Eq. 39, 269 (1981) Google Scholar
  7. C. Conley, J. Smoller, J. Diff. Eq. 63, 389 (1986) Google Scholar
  8. Y.H. Lee, L. Sherbakov, J. Taber, J. Shi, J. Comput. Appl. Math. 194, 357 (2004) Google Scholar
  9. L.S. Tsimring, H. Levine, D.A. Kessler, Phys. Rev. Lett. 76, 4440 (1996); E. Brunet, B. Derrida, Phys. Rev. E 56, 2597 (1997); D.A. Kessler, Z. Ner, L.M. Sander, Phys. Rev. E 58, 107 (1998), V. Méndez, D. Campos, E.P. Zemskov, Phys. Rev. E 72, 056113 (2005) Google Scholar
  10. R.D. Benguria, M.C. Depassier, Phys. Rev. Lett. 77 (1996) 2847; V. Méndez, J. Math. Phys. 39, 954 (1998) Google Scholar
  11. H.P. McKean, Adv. Math. 4, 209 (1970) Google Scholar
  12. V. Méndez, V. Ortega-Cejas, E.P. Zemskov, J. Casas-Vázquez, Physica A 375 (2007) 51; E.P. Zemskov, V. Méndez, Physica A 376, 208 (2007) Google Scholar
  13. V. Méndez, J.E. Llebot, Phys. Rev. E 56, 6557 (1997) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • V. Méndez
    • 1
    Email author
  • W. Horsthemke
    • 2
  • J. Casas-Vázquez
    • 1
  • E. P. Zemskov
    • 1
  1. 1.Grup de Física Estadística, Universitat Autonoma de Barcelona, Facultat de CienciesBellaterra CerdanyolaSpain
  2. 2.Department of ChemistrySouthern Methodist UniversityDallasUSA

Personalised recommendations