Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 169–176 | Cite as

Pattern formation and encoding rhythms analysis on a spiking/bursting neuronal network

  • C. AguirreEmail author
  • D. Campos
  • P. Pascual
  • L. Vázquez
Article

Abstract.

In this work we study the formation of patterns of neuronal activity when some input are presented to the network. For this task a recently developed model of neuron is utilized. This model requires a very low computational effort but presents many characteristics of more complex models such as, spiking, bursting and sub-threshold oscillations, and therefore the realistic study of the behavior of big ensembles of neurons can be aborded, even under real time conditions. New results of the application of the wavelet transform technique to the analysis of pattern formation and the possible encoding of rhythms are presented; they show that this simple, low-computational, neuron model behaves much like more complex ones.

Keywords

Discrete Wavelet Transform European Physical Journal Special Topic Neuron Model Piecewise Linear Function Inferior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (The MIT press, Cambridge, MA, USA, 2007) Google Scholar
  2. B.J. West (ed.), Patterns, Information and Chaos in Neuronal Systems (World Scientific Publishing, Singapore, 1993) Google Scholar
  3. A.C. Scott (ed.), Encyclopedia of Nonlinear Sciences (Routledge, New York, USA, 2004) Google Scholar
  4. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 165 (1954) Google Scholar
  5. R.M. Rose, J.L. Hindmarsh, Proc. Royal Soc. Lond. B 237, 267 (1989) Google Scholar
  6. M.P. Zorzano, L. Vázquez, Physica D 179, 105 (2003) Google Scholar
  7. L. Vázquez, M.P. Zorzano, FitzHugh-Nagumo, Encyclopedia of Nonlinear Science (Routledge, New York, USA, 2004), p. 307 Google Scholar
  8. N.F. Rulkov, Phys. Rev. E 65, 041922–1 (2002) Google Scholar
  9. E.M. Izhikevich, IEEE Trans. Neur. Netw. 14, 1569 (2003) Google Scholar
  10. C. Aguirre, D. Campos, P. Pascual, E. Serrano, Neuro comp. 69, 1116 (2006) Google Scholar
  11. C. Aguirre, D. Campos, P. Pascual, E. Serrano, Lect. Notes Comp. Sci. 3696, 103 (2005) Google Scholar
  12. P. Varona, C. Aguirre, J.J Torres, M.I. Rabinovich, H.D.I. Abarbanel, Neurocom. 44–46, 685 (2002) Google Scholar
  13. E.M. Izhikevich, Int. J. Bifur. Chaos 10, 1171 (2000) Google Scholar
  14. M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H.D.I. Abarbanel, T.J. Sejnowski, G. Laurent, Neuron 30, 553 (2001) Google Scholar
  15. C.M. Gray, W. Singer, Proc. Natl. Acad. Sci. USA 86, 1698 (1989) Google Scholar
  16. R.C. Elson et al., Phys. Rev. Lett. 81, 5692 (1998) Google Scholar
  17. N.F. Rulkov, I. Timofeev, M. Bazhenov, J. Comp. Neurosci. 17, 203 (2004) Google Scholar
  18. E. Leznik, D. Contreras, V. Makarenko, R. Llinas, Soc. Neurosci. 25, 1252 (1999) Google Scholar
  19. R. Llinás, J.P. Welsh, Curr. Opin. Neurobiol. 3, 958 (1993) Google Scholar
  20. E.J. Stollnitz, T.D. Derose, D.H. Salesin, Wavelets for Computer Graphics (Morgan Kaufman Publishers, Los Altos, CA, USA, 1996) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • C. Aguirre
    • 1
    Email author
  • D. Campos
    • 1
  • P. Pascual
    • 1
  • L. Vázquez
    • 2
    • 3
  1. 1.GNB, Escuela Politcnica Superior, Universidad Autnoma de MadridMadridSpain
  2. 2.Departamento de Matemtica AplicadaFacultad de Informtica Universidad Complutense de MadridMadridSpain
  3. 3.Centro de Astrobiologa, CSIC/INTA, 28850 Torrejn de ArdozMadridSpain

Personalised recommendations