The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 145–154 | Cite as

Optimal communication schemes in a complex network: From trees to bottleneck networks

  • R. CriadoEmail author
  • J. Flores
  • J. Pello
  • M. Romance


The robustness of a communication scheme in a complex network may depend on the location of distinguished nodes. We collect different approaches to the idea of vulnerability and we give methods that help us to decide the good spots for the leader nodes. More specifically, we present a constructive method that yields the best location in a communication scheme for a leader node in the case that the underlying network is tree-shaped and show how it can be used for more general networks. In order to do that we consider a local approach via the bottleneck tree associated to a given node, as well as a uniform a approach by means of the so-called bottleneck network for several communication topologies.


Complex Network European Physical Journal Special Topic Vulnerability Function Simple Path Distinguished Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations (Numerical Mathematics and Scientific Computation) (Oxford University Press, 1997) Google Scholar
  2. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002) Google Scholar
  3. Y. Bar-Yam, Dynamics of Complex Systems (Addison-Wesley, 1997) Google Scholar
  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) Google Scholar
  5. R. Cohen, K. Erez, D. Ben-Avraham, S. Havril, Phys. Rev. Lett. 85, 4626 (2000) Google Scholar
  6. R. Cohen, K. Erez, D. Ben-Avraham, S. Havril, Phys. Rev. Lett. 86, 3682 (2001) Google Scholar
  7. R. Criado, J. Flores, B. Hernández-Bermejo, J. Pello, M. Romance, J. Math. Mod. Algor. 4, 307 (2005) Google Scholar
  8. R. Criado, A.G. del Amo, B. Hernández-Bermejo, M. Romance, J. Comput. App. Math. 192, 59 (2006) Google Scholar
  9. P. Crucitti, V. Latora, M. Marchiori, A. Rapisarda, Physica A 320, 622 (2003) Google Scholar
  10. A. H. Dekker, B.D. Colbert, Proceedings of ACSC04, the 27th Australasian Computer Science (Cairns, Australia, 2004), p. 685 Google Scholar
  11. P. Holme, J.-H. Kim, Phys. Rev. E 65, 066109 (2002) Google Scholar
  12. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001) Google Scholar
  13. V. Latora, M. Marchiori, Chaos, Solit. Fract. 20, 69 (2004) Google Scholar
  14. M.E.J. Newman, M. Girvan, Phys. Rev. E. 69 026113 (2004) Google Scholar
  15. C. Boyd, A. Mathuria, Protocols for Authentication and Key Establishment (Information Security and Cryptography) (Springer, 2003) Google Scholar
  16. R. Criado, J. Flores, M.I. Gonzalez-Vasco, J. Pello, J. Comput. Appl. Math. (to appear) Google Scholar
  17. M.E.J. Newman, SIAM Rev. 45, 167 (2003) Google Scholar
  18. S.H. Strogatz, Nature 410, 268 (2001) Google Scholar
  19. J.M. Bohli, M.I. González-Vasco, R. Steinwandt (preprint) Google Scholar
  20. R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000) Google Scholar
  21. B. Bollobas, O. Riordan, Internet Math. 1, 1 (2003) Google Scholar
  22. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000) Google Scholar
  23. S. Bornholdt, H.G. Schuster, From the Genome to the Internet (Wiley-VCH, Germany, 2003) Google Scholar
  24. J.-H. Kim, K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 058701 (2003) Google Scholar
  25. V. Latora, M. Marchiori, Phys. Rev. E 71, 015103 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations