Patterns and supersolids

  • C. JosserandEmail author
  • Y. Pomeau
  • S. Rica


In the frame of the Gross–Pitaevskii equation with a non-local interaction term we study the crystallization induced by the non-local interaction and its connection with the theory of supersolids. The crystallization is well understood as the search of a ground-state of a certain energy functional, and uses the techniques of pattern-formation in the weak (but finite) amplitude limit. In two space dimensions an hexagonal pattern is displayed, however, in three space dimensions density modulation displays an hexagonal-close-packing or hcp structure. We derive, using the technique of homogenization, an effective Lagrangian that provides the long-wave slow dynamics for the local density variations, the global wavefunction phase, and for the crystal deformation. As a classical crystal, our supersolid displays shear and compression waves for the elastic deformations, however the later are coupled with the wave function phase and the local density. Finally the system presents the quite remarkable property of non-classical rotational inertia (NCRI) under rotation. Indeed under an uniform slow rotation the effective moment of inertia is less than the one of a classical rigid body.


European Physical Journal Special Topic Rotational Inertia Ground State Solution Pitaevskii Equation Classical Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Pomeau, Europhys. Lett. 11, 713 (1990) Google Scholar
  2. L. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer-Verlag, Berlin, Heildelberg, 2006) Google Scholar
  3. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956) Google Scholar
  4. A.C. Newell, Y. Pomeau, J. Phys. A 26, L429 (1993) Google Scholar
  5. E. Kim, M.H.W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004); Phys. Rev. Lett. 97, 115302 (2006) Google Scholar
  6. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Google Scholar
  7. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961); E.P. Gross, J. Math. Phys. 4, 195 (1963) Google Scholar
  8. Y. Pomeau, S. Rica, Phys. Rev. Lett. 72, 2426 (1994) Google Scholar
  9. N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947) Google Scholar
  10. D.A. Kirzhnits, Yu.A. Nepomnyashchii, ZETF 59, 2203 (1970); Sov. Phys. JETP 32, 1191 (1971) Google Scholar
  11. C. Josserand, Y. Pomeau, S. Rica, Phys. Rev. Lett. (2007) (to appear) Google Scholar
  12. A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Aanalysis in Periodic Structures (North-Holland, Amsterdam, 1978); E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes Phys. 127 (Springer-Verlag, Berlin, 1980) Google Scholar
  13. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, 1980) Google Scholar
  14. D.T. Son, Phys. Rev. Lett. 94, 175301 (2005) Google Scholar
  15. A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970) Google Scholar
  16. L.M. Milne-Thomson, Theoretical Hydrodynamics (Dover, 1996), pp. 263–271 Google Scholar
  17. A. Fetter, J. Low Temp. Phys. 16, 533 (1974) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut Jean Le Rond D'Alembert, UMR 7190 CNRS-UPMCParisFrance
  2. 2.Laboratoire de Physique Statistique, ENS-CNRSParisFrance
  3. 3.Department of MathematicsThe University of ArizonaTucsonUSA
  4. 4.Departamento de FísicaUniversidad de ChileSantiagoChile

Personalised recommendations