Advertisement

Spatial patterns in non-locally interacting particle systems

  • C. LópezEmail author
  • E. Hernández-García
Article

Abstract.

The influence of spatially non-local interactions on the aggregation, competition, and growth dynamics of interacting particle systems has been recently addressed. In this paper we survey recent results obtained for this kind of systems, focusing on two types of population dynamics models: (a) density-dependent mobility particle systems, with conserved total number of individuals, and (b) birth–dealth systems, where annihilation-creation events are allowed, so that the total number of particles is not conserved. Both models present a pattern forming instability leading to surprisingly similar spatial structures. The two levels of description, microscopic-particle and macroscopic-density, are analyzed. From the last one, a clear identification of the pattern forming instability is obtained.

Keywords

Pattern Formation European Physical Journal Special Topic Particle Model Particle Dynamic Density Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Flierl, D. Grunbaum, S. Levin, D. Olson, J. Theor. Biol. 196, 397 (1999); A. Mogiler, L. Edelstein-Keshet, J. Math. Biol. 38, 534 (1999); F. Cecconi, M. Marsili, J.R. Banavar, A. Maritan, Phys. Rev. Lett. 89, 088102 (2002); C. Topaz, A. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004); Y.E. Maruvka, N.M. Shnerb, Phys. Rev. E 73, 011903 (2006) Google Scholar
  2. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995) Google Scholar
  3. D.D. Holm, V. Putkaradze, Phys. Rev. Lett. 95, 226106 (2005); D.D. Holm, V. Putkaradze, nlin.PS/0506020 Google Scholar
  4. C. López, Phys. Rev. E 72, 061109 (2005) Google Scholar
  5. C. López, Phys. Rev. E 74, 012102 (2006) Google Scholar
  6. J.D. Murray, Mathematical Biology I (Springer, Berlin, 2005) Google Scholar
  7. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, North-Holland, Amsterdam, 1981) Google Scholar
  8. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984) Google Scholar
  9. D.S. Dean, J. Phys. A 29, L613 (1996) Google Scholar
  10. U.M.B. Marconi, P. Tarazona, J. Chem. Phys. 110, 8032 (1999) Google Scholar
  11. E. Hernández-García, C. López, Phys. Rev. E 70, 016216 (2004) Google Scholar
  12. C. López, E. Hernández-García, Physica D 199, 223 (2004) Google Scholar
  13. E. Hernández-García, C. López, Physica A 356, 95 (2005) Google Scholar
  14. E. Hernández-García, C. López, J. Phys.: Condens. Matter 17, S4263 (2005) Google Scholar
  15. M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Phys. Rev. Lett. 91, 158104 (2003); 70, 016216 (2004); M.G. Clerc, D. Escaff, V.M. Kenkre, Phys. Rev. E 72, 056217 (2005) Google Scholar
  16. W.R. Young, A.J. Roberts, G. Stuhne, Nature 412, 328 (2001) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus de la Universidad de las Islas BalearesPalma de MallorcaSpain

Personalised recommendations