Advertisement

Energy diffusion in hard-point systems

  • L. Delfini
  • S. Denisov
  • S. Lepri
  • R. Livi
  • P. K. Mohanty
  • A. Politi
Article

Abstract.

We investigate the diffusive properties of energy fluctuations in a one-dimensional diatomic chain of hard-point particles interacting through a square-well potential. The evolution of initially localized infinitesimal and finite perturbations is numerically investigated for different density values. All cases belong to the same universality class which can be also interpreted as a Levy walk of the energy with scaling exponent γ=3/5. The zero-pressure limit is nevertheless exceptional in that normal diffusion is found in tangent space and yet anomalous diffusion with a different rate for perturbations of finite amplitude. The different behaviour of the two classes of perturbations is traced back to the “stable chaos" type of dynamics exhibited by this model. Finally, the effect of an additional internal degree of freedom is investigated, finding that it does not modify the overall scenario.

Keywords

Tangent Space European Physical Journal Special Topic Universality Class Side Peak Body Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Hahn, J. Kärger, V. Kukla, Phys. Rev. Lett. 76, 2762 (1996) Google Scholar
  2. Y. Pomeau, R. Résibois, Phys. Rep. 19, 63 (1975) Google Scholar
  3. O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002) Google Scholar
  4. S. Pal, G. Srinivas, S. Bhattacharyya, B. Bagchi, J. Chem. Phys. 116, 5941 (2002) Google Scholar
  5. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997); Europhys. Lett. 43, 271 (1998) Google Scholar
  6. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003) Google Scholar
  7. S. Lepri, R. Livi, A. Politi, Chaos 15, 015118 (2005) Google Scholar
  8. D. D'Humieres, P. Lallemand, Y. Qian, C. R. Acad. Sci. (Paris) 308, 585 (1989) Google Scholar
  9. M. Bishop, J. Stat. Phys. 29, 623 (1982) Google Scholar
  10. S. Lepri, P. Sandri, A. Politi, Eur. Phys. J. B 47, 549 (2005) Google Scholar
  11. S. Maruyama, Physica B 323, 193 (2002) Google Scholar
  12. N. Mingo, D.A. Broido, Nanolett., 5, 1221 (2005) Google Scholar
  13. J. Scheipers, W. Schirmacher, Z. Phys. B 103, 547 (1997) Google Scholar
  14. S. Lepri, Phys. Rev. E 58, 7165 (1998) Google Scholar
  15. L. Delfini, S. Lepri, R. Livi, A. Politi, Phys. Rev. E 73, 060201(R) (2006) Google Scholar
  16. G.R. Lee-Dadswell, B.G. Nickel, C.G. Gray, Phys. Rev. E 72, 031202 (2005) Google Scholar
  17. L. Delfini, S. Lepri, R. Livi, A. Politi cond-mat/0611278 Google Scholar
  18. P. Cipriani, S. Denisov, A. Politi, Phys. Rev. Lett. 94, 244301 (2005) Google Scholar
  19. S. Lepri, R. Livi, A. Politi, Phys. Rev. E 68, 067102 (2003) Google Scholar
  20. G. Casati, Found. Phys. 16, 51 (1986) Google Scholar
  21. T. Hatano, Phys. Rev. E 59, R1 (1999) Google Scholar
  22. A. Dhar, Phys. Rev. Lett. 86, 3554 (2001) Google Scholar
  23. P. Grassberger, W. Nadler, L. Yang, Phys. Rev. Lett. 89, 180601 (2002) Google Scholar
  24. G. Casati, T. Prosen, Phys. Rev. E 67, 015203(R) (2003) Google Scholar
  25. P.I. Hurtado, Phys. Rev. Lett. 96, 010601 (2006) Google Scholar
  26. A.V. Savin, G. P. Tsironis, A.V. Zolotaryuk, Phys. Rev. Lett. 85, 154301 (2002) Google Scholar
  27. A. Politi, R. Livi, G.L. Oppo, R. Kapral, Europhys. Lett. 22, 571 (1993) Google Scholar
  28. M. Bishop, M.A. Boonstra, Am. J. Phys. 51 564 (1983) Google Scholar
  29. D. Forster, Hydrodynamic Fluctuations, Broken symmetry and Correlation Functions (W.A. Benjamin, Reading, 1975) Google Scholar
  30. E. Helfand, Phys. Rev. 119, 1 (1960) Google Scholar
  31. A. Blumen, G. Zumofen, J. Klafter, Phys. Rev. A 40, 3964 (1989) Google Scholar
  32. S. Denisov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 91, 194301 (2004) Google Scholar
  33. A. Politi, A. Torcini, Europhys. Lett. 28, 545 (1994) Google Scholar
  34. R. Bonaccini, A. Politi, Physica D 103, 362 (1997) Google Scholar
  35. J.M. Deutsch, O. Narayan, Phys. Rev. E 68, 010201 (2003) Google Scholar
  36. H. Zhao, Phys. Rev. Lett. 96, 140602 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • L. Delfini
    • 1
  • S. Denisov
    • 2
  • S. Lepri
    • 1
  • R. Livi
    • 3
  • P. K. Mohanty
    • 4
  • A. Politi
    • 1
  1. 1.Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10Sesto FiorentinoItaly
  2. 2.Department of PhysicsUniversity of AugsburgAugsburgGermany
  3. 3.Dipartimento di FisicaSesto FiorentinoItaly
  4. 4.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations