Advertisement

A thermodynamic description of thermo-diffusion in suspensions of rigid particles

  • G. LebonEmail author
  • D. Lhuillier
  • A. Palumbo
Article

Abstract.

The relative motion between solute molecules and a solvent in presence of a thermal gradient is usually described by Soret and Dufour's laws. When considering a suspension of supra-particles in a solvent, the relative motion requires a more complex description. This problem of thermo-diffusion is here considered in the framework of Extended Irreversible Thermodynamics whose main characteristic is to raise the fluxes of matter and heat to the status of independent variables. The description is rather complex but it appears to receive a rather simple interpretation by comparing with other approaches like the internal variable theory, classical irreversible thermodynamics and the two-fluid model of suspensions. We obtain new and interesting generalizations of Soret and Dufour's laws and in particular, a novel expression for the non-dissipative part of the force exerted by the fluid on the particles.

Keywords

Evolution Equation European Physical Journal Special Topic Irreversible Thermodynamic Pressure Tensor Entropy Production Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Lhuillier, Flow of Particles in Suspensions, edited by U. Schaflinger (Springer, CISM Courses and Lectures 370, 1996), pp. 39–61 Google Scholar
  2. D. Lhuillier, J. Non-Newtonian Fluid Mech. 96, 19 (2001) Google Scholar
  3. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 3rd edn. (Springer, Berlin, 2001) Google Scholar
  4. C. Perez-Garcia, Recent Developments in Nonequilibrium Thermodynamics, edited by J. Casas-Vazquez, G. Lebon, Lect. Notes in Phys. 199 (Springer, Berlin, 1984), pp. 124–143 Google Scholar
  5. N. Depireux, G. Lebon, J. Non-Newtonian Fluid Mech. 96, 105 (2001) Google Scholar
  6. R.I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1990) Google Scholar
  7. D. Lhuillier, J. Phys. II (France) 5, 19 (1995) Google Scholar
  8. S.R. de Groot, P. Mazur, Non Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962) Google Scholar
  9. L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959) Google Scholar
  10. C. Truesdell, Rational Thermodynamics (Springer, New York, 1984) Google Scholar
  11. G. Ryskin, Phys. Rev. Lett. 61, 1442 (1988) Google Scholar
  12. H. Brenner, Ann. Rev. Fluid Mech. 2, 137 (1970) Google Scholar
  13. H. Grad, Principles of the Kinetic Theory of Gases, Handbuch der Physik XII (Springer, Berlin, 1958) Google Scholar
  14. Y.A. Buyevich, Int. J. Heat Mass Transfer 35, 2453 (1992) Google Scholar
  15. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1970) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Département d'Astrophysique, Géophysique et Océanographie, Université de LiègeLiègeBelgique
  2. 2.Modélisation en Mécanique, Université Paris 6ParisFrance
  3. 3.Dipartimento di MatematicaUniversità di MessinaMessinaItalia

Personalised recommendations