Advertisement

The European Physical Journal Special Topics

, Volume 143, Issue 1, pp 249–251 | Cite as

Phase ordering induced by defects in chaotic bistable media

  • C. Echeverria
  • K. Tucci
  • M. G. Cosenza
Article
  • 43 Downloads

Abstract.

The phase ordering dynamics of coupled chaotic bistable maps on lattices with defects is investigated. The statistical properties of the system are characterized by means of the average normalized size of spatial domains of equivalent spin variables that define the phases. It is found that spatial defects can induce the formation of domains in bistable spatiotemporal systems. The minimum distance between defects acts as parameter for a transition from a homogeneous state to a heterogeneous regime where two phases coexist The critical exponent of this transition also exhibits a transition when the coupling is increased, indicating the presence of a new class of domain where both phases coexist forming a chessboard pattern.

Keywords

EUROPEAN Physical Journal Special Topic Critical Exponent Venezuela Jalan Minimum Euclidean Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Focus issue on Coupled Map Lattices, edited by K. Kaneko, Chaos 2, No. 3 (1992) Google Scholar
  2. M.G. Cosenza, R. Kapral, Chaos 4, 99 (1994) CrossRefADSGoogle Scholar
  3. P.M. Gade, H.A. Cerdeira, R. Ramaswamy, Phys. Rev. E 52, 2478 (1995) CrossRefADSGoogle Scholar
  4. M.G. Cosenza, K. Tucci, Phys. Rev. E 64, 026208 (2001); Phys. Rev. E 65, 036223 (2002) CrossRefADSGoogle Scholar
  5. S. Jalan, R.E. Amritkar, Phys. Rev. Lett. 90, 014101 (2003) CrossRefADSGoogle Scholar
  6. K. Tucci, M.G. Cosenza, O. Alvarez-Llamoza, Phys. Rev. E 68, 027202 (2003) CrossRefADSGoogle Scholar
  7. J. Miller, D. Huse, Phys. Rev. E 48, 2528 (1993) CrossRefADSGoogle Scholar
  8. A. Lemaitre, H. Chaté, Phys. Rev. Lett. 82, 1140 (1999) CrossRefADSGoogle Scholar
  9. J. Kockelkoren, A. Lemaitre, H. Chaté, Physica A 288, 326 (2000) CrossRefADSGoogle Scholar
  10. W. Wang, Z. Liu, B. Hu, Phys. Rev. Lett. 84, 2610 (2000) CrossRefADSGoogle Scholar
  11. L. Angelini, M. Just, H. Kantz, Phys. Lett. A 285, 293 (2001) zbMATHCrossRefADSGoogle Scholar
  12. F. Schmüser, W. Just, H. Kantz, Phys. Rev. E 61, 3675 (2000) CrossRefADSMathSciNetGoogle Scholar
  13. N. Andrenacci, F. Corberi, E. Lippiello, Phys. Rev. E 74, 031111 (2006) CrossRefADSGoogle Scholar
  14. A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • C. Echeverria
    • 1
  • K. Tucci
    • 2
  • M. G. Cosenza
    • 3
  1. 1.Laboratorio de Física Aplicada ComputacionalUniversidad Nacional Experimental del TáchiraSan CristóbalVenezuela
  2. 2.SUMA-CeSiMo, Universidad de Los AndesMéridaVenezuela
  3. 3.Centro de Física Fundamental, Universidad de Los AndesMéridaVenezuela

Personalised recommendations