The European Physical Journal Special Topics

, Volume 143, Issue 1, pp 201–208 | Cite as

High frequency (daily) data analysis of the Southern Oscillation Index. Tsallis nonextensive statistical mechanics approach

  • F. Petroni
  • M. Ausloos


Daily data of the Southern Oscillation Index between 1999 and mid-2006 has been analyzed in order to obtain the shape and tails of the partial distribution functions (PDF) of the variability of the index. A model originally proposed to describe the intermittent behavior of turbulent flows describes the behavior of the normalized variability for such a climatological index, for small and large time windows, both for small and large variability. The model is linked to Tsallis nonextensive statistics. The transition between the small time scale model of nonextensive, intermittent process and the large scale Gaussian extensive homogeneous fluctuation picture is found to occur at above a ca. 46 days time lag. The intermittency exponent (κ) in the framework of the Kolmogorov log-normal model is found to be related to the scaling exponent of the PDF moments. The value of κ (= 0.25) is in agreement with the intermittency exponent recently obtained for other atmospheric data and for the monthly data, indicating so called scaling universality. We suggest improvements on forecasting along the lines of Tsallis non extensive statistics.


European Physical Journal Special Topic Probability Distribution Function Southern Oscillation Index Tsallis Statistic Intermittent Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G.K. Vallis, J. Geophys. Res. 93, 13979 (1988) ADSCrossRefGoogle Scholar
  2. S.G. Philander, Rep. Prog. Phys. 62, 123 (1999) CrossRefADSGoogle Scholar
  3. M. Ghil, N. Jiang, Geophys. Res. Lett. 25, 171 (1998) CrossRefADSGoogle Scholar
  4. C.L. Keppenne, M. Ghil, J. Geophys. Res. 97, 20449 (1992) ADSGoogle Scholar
  5. G.T. Walker, Q.J.R. Meteorol. Soc. 54, 79 (1928) CrossRefADSGoogle Scholar
  6. Google Scholar
  7. M. Ausloos, K. Ivanova, Phys. Rev. E 63, 047201 (2001) CrossRefADSGoogle Scholar
  8. M. Ausloos, F. Petroni, Physica A (2006) (in press) Google Scholar
  9. M. Ausloos, Physica A 336, 93 (2004) CrossRefADSMathSciNetGoogle Scholar
  10. P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods (Springer-Verlag, Berlin, 1991) Google Scholar
  11. C. Beck, Phys. Rev. Lett. 87, 180601 (2001) CrossRefADSMathSciNetGoogle Scholar
  12. C. Beck, Physica A 295, 195 (2001) zbMATHCrossRefADSGoogle Scholar
  13. C. Beck, G.S. Lewis, H.L. Swinney, Phys. Rev. E 63, 035303 (2001) CrossRefADSGoogle Scholar
  14. SeasonalClimateOutlook/ SouthernOscillationIndex/ SOIDataFiles/index.html Google Scholar
  15. F.M. Ramos, C. Rodrigues Neto, R.R. Rosa, L.D. Abreu Sa, M.J.A. Bolzan, Nonlinear Anal. Theory 23, 3521 (2001) CrossRefGoogle Scholar
  16. C. Tsallis, J. Stat. Phys. 52, 479 (1988) zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75, 3589 (1995) zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. F. Michael, M.D. Johnson, Physica A 320, 525 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. N Kozuki, N Fuchikami, Physica A 329, 222 (2003) zbMATHCrossRefADSGoogle Scholar
  20. A.M. Kolmogorov, J. Fluid Mech. 13, 82 (1962) zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications (Springer-Verlag, Heidelberg, Germany, 2001) Google Scholar
  22. G. Kaniadakis, M. Lissia, A. Rapisarda (Eds.), Physica A 305, 1/2 (2002) CrossRefADSMathSciNetGoogle Scholar
  23. C. Tsallis, A.R. Plastino, W.-M. Zheng, Chaos Solit. Fract. 8, 885 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  24. U.M.S. Costa, M.L. Lyra, A.R. Plastino, C. Tsallis, Phys. Rev. E 56, 245 (1997) CrossRefADSGoogle Scholar
  25. M.L. Lyra, C. Tsallis, Phys. Rev. Lett. 80, 53 (1998) CrossRefADSGoogle Scholar
  26. V. Latora, M. Baranger, A. Rapisarda, C. Tsallis, Phys. Lett. A 273, 97 (2000) CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. F. Baldovin, A. Robledo, Phys. Rev. E 66, 045104 (2002) CrossRefADSGoogle Scholar
  28. F. Baldovin, A. Robledo, Europhys. Lett. 60, 518 (2002) CrossRefADSMathSciNetGoogle Scholar
  29. U. Tirnakli, Phys. Rev. E 66, 066212 (2002) CrossRefADSMathSciNetGoogle Scholar
  30. V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 83, 2104 (1999) CrossRefADSGoogle Scholar
  31. V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001) CrossRefADSGoogle Scholar
  32. T.R. Stewart, Forecast value: Descriptive decision studies. In R.W. Katz, A.H. Murphy (Eds.), Economic value of weather and climate forecasts (Cambridge University Press, New York, 1997), pp. 147–181 see also flip/ROCAI2004/ Google Scholar
  33. J.E. Thornes, D. Stephenson, Meteorol. Appl. 8, 307 (2001) CrossRefADSGoogle Scholar
  34. Ph. Bronlet, M. Ausloos, Int. J. Mod. Phys. C 14, 351 (2003) CrossRefADSGoogle Scholar
  35. C. Primo, A. Galván, C. Sordo, J.M. Gutiérrez, Physica A (2006) (in press) Google Scholar
  36. K.R. Sreenivasan, P. Kailasnath, Phys. Fluids 5, 512 (1993) CrossRefADSGoogle Scholar
  37. /geerts/cwx/notes/chap12/nwpgcm.html Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • F. Petroni
    • 1
  • M. Ausloos
    • 1
  1. 1.SUPRATECS, B5, Sart TilmanLiègeBelgium

Personalised recommendations