Advertisement

The European Physical Journal Special Topics

, Volume 143, Issue 1, pp 191–197 | Cite as

A non-standard statistical approach to the silo discharge

  • R. Arévalo
  • A. Garcimartín
  • D. Maza
Article

Abstract.

We present molecular dynamics simulations of the beginning of a silo discharge by gravity. The evolution of the velocity profile and the probability density functions for the displacements of the grains are obtained. These PDFs reveal non-gaussian statistics and superdiffusive behavior similar to that observed in some experiments. We propose an analytical expression for the PDFs and an explanation for its dynamical origin in connection with the ideas of the “spot" model and non-extensive thermodynamics.

Keywords

Molecular Dynamic Simulation European Physical Journal Special Topic Entropic Index Semilogarithmic Scale Tsallis Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004) Google Scholar
  2. J.J. Brey, J.W. Dufty, C.S. Kim, A. Santos, Phys. Rev. E 58, 4638 (1998) CrossRefADSGoogle Scholar
  3. I. Zuriguel, A. Garcimartín, D. Maza, L.A. Pugnaloni, J.M. Pastor, Phys. Rev. E 71, 051303 (2005) CrossRefADSGoogle Scholar
  4. B. Utter, R.P. Behringer, Phys. Rev. E 69, 031308 (2004) CrossRefADSGoogle Scholar
  5. R.M. Nedderman, Statics and kinematics of granular materials (Nova Science, 1991) Google Scholar
  6. J. Litwiniszyn, Bull. Acad. Pol. Sci. 11, 593 (1963) Google Scholar
  7. J. Mullins, Powder Technol. 9, 29 (1974) CrossRefGoogle Scholar
  8. R.M. Nedderman, U. Tüzün, Powder Technol. 22, 243 (1979) CrossRefGoogle Scholar
  9. J. Choi, A. Kudrolli, R.R. Rosales, M.Z. Bazant, Phys. Rev. Lett. 92, 174301 (2004) CrossRefADSGoogle Scholar
  10. J. Choi, A. Kudrolli, M.Z. Bazant, J. Phys. Cond. Matt. 17, S2533–S2548 (2005) Google Scholar
  11. M.Z. Bazant, Mech. Mat. 38, 717 (2006) CrossRefGoogle Scholar
  12. J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I (France), 6, 5 (1996) Google Scholar
  13. M. Ausloos, R. Lambiotte, Phys. Rev. E 73, 011105 (2006) CrossRefADSGoogle Scholar
  14. R. Arévalo, D. Maza, L.A. Pugnaloni, Phys. Rev. E 74, 021303 (2006) CrossRefADSGoogle Scholar
  15. C. Tsallis, J. Stat. Phys. 52, 479 (1998) CrossRefMathSciNetGoogle Scholar
  16. C. Beck, Phys. Rev. Lett. 87 180601 (2001) Google Scholar
  17. C. Tsallis, A.M.C. de Souza, R. Maynard, Lévy Flights and Related Topics in Physics, edited by M. Schlesinger, G.M. Zaslavsky, U. Frisch (Springer, Berlin Heidelberg, New York, 1995), p. 269 Google Scholar
  18. D.C. Rappaport, The art of molecular dynamics simulation (Cambridge University Press, 2004) Google Scholar
  19. H. Viridissima, I. Upadhyaya, J.-P. Rieu, J. Glaizer, Y. Sawada, Physica A 293, 549 (2001) CrossRefGoogle Scholar
  20. K. Daniels, C. Beck, E. Bodenschatz, Physica D 193, 208 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • R. Arévalo
    • 1
  • A. Garcimartín
    • 1
  • D. Maza
    • 2
  1. 1.Department of Physics and Applied MathematicsUniversidad de NavarraPamplonaSpain
  2. 2.Also at Physics Institute, Universidad de NavarraPamplonaSpain

Personalised recommendations