Advertisement

The European Physical Journal Special Topics

, Volume 143, Issue 1, pp 159–164 | Cite as

Paradoxical Brownian motion in a microfluidic device: Absolute negative mobility

  • R. Eichhorn
  • A. Ros
  • J. Regtmeier
  • T. Tu Duong
  • P. Reimann
  • D. Anselmetti
Article

Abstract.

We report on a paradoxical migration mechanism in a microstructured lab-on-a-chip environment. The phenomenon is based on a subtle interplay between Brownian motion (thermal noise), a periodic and symmetric microstructure, and a biased AC electric field. The resulting non-linear dynamics far from thermal equilibrium gives rise to absolute negative mobility, i.e. a migrational transport, which is – both for negative and positive bias – always opposite to the net acting force, in good agreement between experiment and theory.

Keywords

PDMS European Physical Journal Special Topic Thermal Noise Total Voltage Subtle Interplay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995) CrossRefADSGoogle Scholar
  2. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) CrossRefADSGoogle Scholar
  3. J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 86, 950 (2001) CrossRefADSGoogle Scholar
  4. G.P. Harmer, D. Abbott, Nature 402, 864 (1999) CrossRefADSGoogle Scholar
  5. J. Rousselet, L. Salome, A. Ajdari, J. Prost, Nature 370, 446 (1994) CrossRefADSGoogle Scholar
  6. L.P. Faucheux, A. Libchaber, Faraday Trans. 91, 3163 (1995) CrossRefGoogle Scholar
  7. L. Gorre-Talini, J.P. Spatz, P. Silberzan, Chaos 8, 650 (1998) CrossRefADSGoogle Scholar
  8. C. Marquet, A. Buguin, L. Talini, P. Silberzan, Phys. Rev. Lett. 88, 168301-1-4 (2002) CrossRefADSGoogle Scholar
  9. S. Matthias, F. Müller, Nature 424, 53 (2003) CrossRefADSGoogle Scholar
  10. J. Han, H.G. Craighead, Science 288, 1026-1029 (2000) CrossRefADSGoogle Scholar
  11. J.S. Bader et al., PNAS 96, 13165-13169 (1999) CrossRefADSGoogle Scholar
  12. L. Huang, E. Cox, R.H. Austin, J. Sturm, Anal. Chem. 75, 6963-6967 (2003) CrossRefGoogle Scholar
  13. A. van Oudenaarden, S.G. Boxer, Science 285, 1046-1048 (2001) CrossRefGoogle Scholar
  14. T.J. Banys, I.V. Parshelyunas, Y.K. Pozhela, Sov. Phys. Semicond. 5, 1727 (1972) [Fiz. Tekh. Poluprovodn. 5, 1990 (1971)] Google Scholar
  15. B.J. Keay et al., Phys. Rev. Lett. 75, 4098 (1995) CrossRefADSGoogle Scholar
  16. P. Reimann, R. Kawai, C. Van den Broeck, P. Hänggi, Europhys. Lett. 45, 545 (1999) CrossRefADSGoogle Scholar
  17. R. Eichhorn, P. Reimann, P. Hänggi, Brownian Motion Phys. Rev. Lett. 88, 190601 (2002) ADSGoogle Scholar
  18. B. Cleuren, C. Van den Broeck, Phys. Rev. E 67, 055101 (2003) CrossRefADSGoogle Scholar
  19. A. Ros, R. Eichhorn, J. Regtmeier, T. Duong, P. Reimann, D. Anselmetti, Nature 436, 928 (2005) CrossRefADSGoogle Scholar
  20. D. Long, J.-L. Viovy, A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996) CrossRefADSGoogle Scholar
  21. E.B. Cummings, S.K. Griffiths, R.H. Nilson, P.H. Paul, Anal. Chem. 72, 2526 (2000) CrossRefGoogle Scholar
  22. T. Duong et al., Microelectr. Eng. 67-68, 905 (2003) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • R. Eichhorn
    • 1
  • A. Ros
    • 2
  • J. Regtmeier
    • 2
  • T. Tu Duong
    • 2
  • P. Reimann
    • 1
  • D. Anselmetti
    • 2
  1. 1.Condensed Matter Theory, Bielefeld UniversityBielefeldGermany
  2. 2.Experimental Biophysics & Applied Nanoscience, Bielefeld UniversityBielefeldGermany

Personalised recommendations