Advertisement

The European Physical Journal Special Topics

, Volume 143, Issue 1, pp 101–108 | Cite as

Shape instabilities in vesicles: A phase-field model

  • F. Campelo
  • A. Hernández-Machado
Article

Abstract.

A phase field model for dealing with shape instabilities in fluid membrane vesicles is presented. This model takes into account the Canham-Helfrich bending energy with spontaneous curvature. A dynamic equation for the phase-field is also derived. With this model it is possible to see the vesicle shape deformation dynamically, when some external agent instabilizes the membrane, for instance, inducing an inhomogeneous spontaneous curvature. The numerical scheme used is detailed and some stationary shapes are shown together with a shape diagram for vesicles of spherical topology and no spontaneous curvature, in agreement with known results.

Keywords

Free Energy Lagrange Multiplier Dynamic Equation Lipid Bilayer European Physical Journal Special Topic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Edidin, Nat. Rev. Mol. Cell Biol. 4, 414 (2003) CrossRefGoogle Scholar
  2. S. Leibler, Equilibrium statistical mechanics of fluctuating films and membranes, in Statistical Mechanics of Membranes and Surfaces, edited by D. Nelson, S. Weinberg (World Scientific, 1989) pp. 45–103 Google Scholar
  3. S.A. Safran, Statistical Thermodynamics of Surfaces Interfaces, and Membranes, Frontiers in Physics No. 90 (Addison-Wesley, 1994) Google Scholar
  4. R. Lipowsky, E. Sackmann, (Eds.) Structure and Dynamics of Membranes, Handbook of Biological Physics (Elsevier Science, 1995) Google Scholar
  5. B. Alberts et al., Molecular Biology of the Cell, 4th edn. (Garland Science, 2002) Google Scholar
  6. J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, 1992) Google Scholar
  7. J. Zimmerberg, M.M. Kozlov, Nature Rev. Mol. Cell Biol. 7, 9 (2006) CrossRefGoogle Scholar
  8. U. Seifert, Adv. Phys. 46, 13 (1997) CrossRefADSGoogle Scholar
  9. S.A. Safran, Adv. Phys. 48, 395 (1999) CrossRefADSGoogle Scholar
  10. P. Canham, J. Theor. Biol. 26, 61 (1970) CrossRefGoogle Scholar
  11. W. Helfrich, Z. Naturforsch. C 28, 693 (1973) Google Scholar
  12. K. Brakke, Exp. Math. 1, 141 (1992) zbMATHMathSciNetGoogle Scholar
  13. F. Campelo, A. Hernández-Machado, Eur. Phys. J. E 20, 37 (2006) CrossRefGoogle Scholar
  14. I. Tsafrir et al., Phys. Rev. Lett. 86, 1138 (2001) CrossRefADSGoogle Scholar
  15. I. Tsafrir, Shape Instabilities of Membranes with Anchored Polymers under Geometric Constraints, Ph.D. thesis (Weizmann Institute of Science, 2003) Google Scholar
  16. I. Tsafrir, Y. Caspi, M.A. Guedeau-Boudeville, T. Arzi, J. Stavans, Phys. Rev. Lett. 91, 138102 (2003) CrossRefADSGoogle Scholar
  17. H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 27, 113 (1988) CrossRefGoogle Scholar
  18. J. Langer, in Directions in Condensed Matter Physics, edited by G. Grinstein G. Mazenko (World Scientific, 1986) Google Scholar
  19. R. González-Cinca et al., in Advances in Condensed Matter and Statistical Physics, edited by E. Korutcheva, R. Cuerno (Nova Science Publishers, 2004) pp. 203–236, http://arxiv.org/abs/cond-mat/0305058 Google Scholar
  20. M. Alava, M. Dubé, M. Rost, Adv. Phys. 53, 83 (2004) CrossRefADSGoogle Scholar
  21. M. Kraus, W. Wintz, U. Seifert, R. Lipowsky, Phys. Rev. Lett. 77, 3685 (1996) CrossRefADSGoogle Scholar
  22. M. do Carmo, Differential Geometry of Curves and Surfaces (Prentince-Hall, 1976) Google Scholar
  23. G. Foltin, Phys. Rev. E 49, 5243–5248 (1994) CrossRefADSGoogle Scholar
  24. T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996) CrossRefADSGoogle Scholar
  25. Q. Du, C. Liu, X. Wang, J. Comput. Phys. 121, 757 (2006) CrossRefADSGoogle Scholar
  26. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990) CrossRefADSGoogle Scholar
  27. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth & Brooks, 1989) Google Scholar
  28. D.P. Bertsekas, Nonlinear Programming, 2nd edn. (Athena Scientific, 1999) Google Scholar
  29. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991) CrossRefADSMathSciNetGoogle Scholar
  30. R.D. Kamien, Rev. Mod. Phys. 74, 953 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • F. Campelo
    • 1
  • A. Hernández-Machado
    • 1
  1. 1.Departament d'Estructura i Constituents de la MatèriaFacultat de Física, Universitat de BarcelonaBarcelonaSpain

Personalised recommendations