Advertisement

Macroscopic dynamics of cancer growth

  • S. A. Menchón
  • C. A. Condat
Article

Abstract.

Macroscopic modeling is used to describe various aspects of cancer growth. A recently proposed “dysnamical exponent” hypothesis is critically examined in the context of the angiogenic development. It is also shown that the emergence of necroses facilitates the growth of avascular tumors; the model yields an excellent fit to available experimental data, allowing for the determination of growth parameters. Finally, the global effects of an applied antitumoral immunotherapy are investigated. It is shown that, in the long run, the application of a therapeutical course leads to bigger tumors by weakening the intraspecific competition between surviving viable cancer cells. The strength of this model lies in its simplicity and in the amount of information that can be gleaned using only very general ideas.

Keywords

European Physical Journal Special Topic Basal Metabolic Rate Cancer Growth Necrotic Core Antiangiogenic Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a lucid introduction see N.F. Britton, Essential Mathematical Biology (Springer, London, 2003) Google Scholar
  2. M. Scalerandi, A. Romano, G.P. Pescarmona, P.P. Delsanto, C.A. Condat, Phys. Rev. E 59, 2206 (1999) CrossRefADSGoogle Scholar
  3. M. Scalerandi, B. Capogrosso Sansone, C. Benati, C.A. Condat, Phys. Rev. E 65, 051908 (2002) CrossRefADSGoogle Scholar
  4. S.C. Ferreira Jr., M.L. Martins, M.J. Vilela, Phys. Rev. E 67, 051914 (2003) CrossRefADSMathSciNetGoogle Scholar
  5. Yi Jiang, J. Pjesivac-Grbovic, Ch. Cantrell, J.P. Freyer, Biophs. J. 89, 3884 (2005) CrossRefGoogle Scholar
  6. C. Guiot, P.G. Degiorgis, P.P. Delsanto, P. Gabriele, T.S. Deisboeck, J. Theor. Biol. 225, 147 (2003) CrossRefMathSciNetGoogle Scholar
  7. G.B. West, J.H. Brown, B.J. Enquist, Nature 413, 628 (2001) CrossRefADSGoogle Scholar
  8. P.P. Delsanto, C. Guiot, P.G. Degiorgis, C.A. Condat, Y. Mansury, T.S. Deisboeck, Appl. Phys. Lett. 85, 4225 (2004) CrossRefADSGoogle Scholar
  9. C.A. Condat, S.A. Menchón, Physica A 371, 76 (2006) CrossRefADSGoogle Scholar
  10. C. Guiot et al., J. Theor. Biol. 240, 459 (2006) CrossRefGoogle Scholar
  11. M.J. Holmes, B.D. Sleeman, J. Theor. Biol. 202, 95 (2000) CrossRefGoogle Scholar
  12. B. Capogrosso Sansone, M. Scalerandi, C.A. Condat, Phys. Rev. Lett. 87, 128102 (2001) CrossRefADSGoogle Scholar
  13. R.S. Kerbel, Science 312, 1171 (2006) CrossRefADSGoogle Scholar
  14. W. Mueller-Klieser, Crit. Rev. Oncol./Hematol. 36, 123 (2000) CrossRefGoogle Scholar
  15. A.C. Burton, Growth 30, 159 (1966) Google Scholar
  16. G.G. Steel, Growth Kinetics of Tumours (Oxford, Clarendon Press, Oxford, 1977) Google Scholar
  17. R. Ramos, C.A. Condat, unpublished; G. Rivera, M.S. thesis. Univ. of Puerto Rico, Mayagüez, PR (2005) Google Scholar
  18. D. Kirschner, J.C. Panetta, J. Math. Biol. 37, 235 (1998) zbMATHCrossRefGoogle Scholar
  19. O. Sotolongo-Costa, L. Morales Molina, D. Rodríguez Pérez, J.C. Antoranz, M. Chacón Reyes, Physica D 178, 242 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. See, for example, A.M. Hicks et al., Proc. Nat. Acad. Sci. (USA) 103, 7753 (2006) CrossRefGoogle Scholar
  21. P.P. Delsanto, M. Griffa, C.A. Condat, S. Delsanto, L. Morra, Phys. Rev. Lett. 94, 148105 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • S. A. Menchón
    • 1
  • C. A. Condat
    • 1
  1. 1.CONICET and FaMAF, Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations