The unfair consequences of equal opportunities: Comparing exchange models of wealth distribution

  • G. M. Caon
  • S. Gonçalves
  • J. R. Iglesias


Simple agent based exchange models are a commonplace in the study of wealth distribution of artificial societies. Generally, each agent is characterized by its wealth and by a risk-aversion factor, and random exchanges between agents allow for a redistribution of the wealth. However, the detailed influence of the amount of capital exchanged has not been fully analyzed yet. Here we present a comparison of two exchange rules and also a systematic study of the time evolution of the wealth distribution, its functional dependence, the Gini coefficient and time correlation functions. In many cases a stable state is attained, but, interesting, some particular cases are found in which a very slow dynamics develops. Finally, we observe that the time evolution and the final wealth distribution are strongly dependent on the exchange rules in a nontrivial way.


Income European Physical Journal Special Topic Gini Index Wealth Distribution Time Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Pareto, Cours d'Économie Politique, Vol. 2, F. Pichou, Lausanne (1897) Google Scholar
  2. H. Aoyama, W. Souma, Y. Fujiwara, Physica A 324, 352 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. M. Nirei, W. Souma, Two factor model of income distribution dynamics, Santa Fe Institute (USA) report sfi0410029 (2004) Google Scholar
  4. F. Clementi, M. Gallegati, Physica A 350, 427 (2005) CrossRefADSGoogle Scholar
  5. S. Sinha, Evidence for power-law tail of the wealth distribution in India, to appear in Physica A and condmat/0502166v1 (2005) Google Scholar
  6. A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 17, 723–729 (2000) CrossRefADSGoogle Scholar
  7. A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 20, 585 (2001) CrossRefADSGoogle Scholar
  8. A. Dragulescu, V.M. Yakovenko, Physica A 299, 213 (2001) zbMATHCrossRefADSGoogle Scholar
  9. S. Pianegonda, J.R. Iglesias, G. Abramson, J.L. Vega, Physica A 322, 667 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. S. Pianegonda, J.R. Iglesias, Physica A 42, 193 (2004) CrossRefADSGoogle Scholar
  11. C.F. Mourkazel, S. Gonçalves, J.R. Iglesias, M. Achach, R. Huerta, Wealth Condensation in a Multiplicative Random Asset Exchange Model to appear in these Proceedings (2006) Google Scholar
  12. S. Sinha, Phys. Scr. T 106, 59 (2003) CrossRefADSGoogle Scholar
  13. A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A 335, 155 (2004) CrossRefADSMathSciNetGoogle Scholar
  14. B.K.Chakrabarti, A. Chatterjee, Ideal Gas-Like Distributions in Economics: Effects of Saving Propensity, in “Applications of Econophysics”, edited by H. Takayasu, Conference proceedings of Second Nikkei Symposium on Econophysics, Tokyo, Japan, 2002, by Springer-Verlag, Tokyo, 280–285, Preprint available: cond-mat/0302147 (2004) Google Scholar
  15. A. Chakraborti, B.K. Charkrabarti, Eur. J. Phys. B 17, 167 (2000) CrossRefADSGoogle Scholar
  16. J.R, Iglesias, S. Gonçalves, S. Pianegonda, J.L. Vega, G. Abramson, Physica A 327, 12 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. J.R. Iglesias, S. Gonçalves, G. Abramson, J.L. Vega, Physica A 342, 186 (2004) CrossRefADSMathSciNetGoogle Scholar
  18. N. Scafetta, B.J. West, S. Picozzi, cond-mat/0209373v1(2002) and cond-mat/0306579v2 (2003) Google Scholar
  19. B. Hayes, American Scientist 90, 400 (2002) CrossRefGoogle Scholar
  20. Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • G. M. Caon
    • 1
  • S. Gonçalves
    • 1
  • J. R. Iglesias
    • 1
  1. 1.Instituto de Física, Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations