Advertisement

The importance of selection rate in the evolution of cooperation

  • C. P. Roca
  • J. A. Cuesta
  • A. Sánchez
Article

Abstract.

How cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been the standard framework to address this issue. In most models, every individual plays with all others, and then reproduces and dies according to what she earns. This amounts to assuming that selection takes place at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors. Similar non trivial phenomena arise in other binary games and even in more complicated settings such as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model the emergence of cooperation, and one that has so far been overlooked.

Keywords

European Physical Journal Special Topic Selection Event Evolutionary Game Ultimatum Game Replicator Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Darwin, The Descent of Man, and Selection in Relation to Sex (Murray, London, 1871) Google Scholar
  2. J. Maynard-Smith, E. Szathmáry, The Major Transitions in Evolution (W.H. Freeman, Oxford, 1995) Google Scholar
  3. E. Pennisi, Science 309, 93 (2005) CrossRefGoogle Scholar
  4. R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981) CrossRefADSMathSciNetGoogle Scholar
  5. H. Gintis, Game Theory Evolving (Princeton University, Princeton, 2000) Google Scholar
  6. M. Nowak, K. Sigmund, Science 303, 793 (2004) CrossRefADSGoogle Scholar
  7. R. Sugden, The Economics of Rights, Co-operation and Welfare (Blackwell, Oxford, 1986) Google Scholar
  8. B. Skyrms, The Stag Hunt and the Evolution of Social Structure (Cambridge University Press, Cambridge, 2003) Google Scholar
  9. C. Camerer, Behavioral Game Theory (Princeton University, Princeton, 2003) Google Scholar
  10. P.D. Taylor, L. Jonker, J. Math. Biosci. 40, 145 (1978) zbMATHCrossRefGoogle Scholar
  11. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998) Google Scholar
  12. M.A. Nowak, R. May, Nature 359, 826 (1992) CrossRefADSGoogle Scholar
  13. M. Doebeli, N. Knowlton, Proc. Natl. Acad. Sci. USA 95, 8676 (1998) CrossRefADSGoogle Scholar
  14. K.M. Page, M.A. Nowak et al., Proc. Roy. Soc. Lond. B 267, 2177 (2000) CrossRefGoogle Scholar
  15. C. Hauert, M. Doebeli, Nature 428, 643 (2004) CrossRefADSGoogle Scholar
  16. V.M. Eguíluz, M.G. Zimmermann et al., Am. J. Sociol. 110, 977 (2005) CrossRefGoogle Scholar
  17. M.G. Zimmermann, V.M. Eguíluz, Phys. Rev. E 72, 056118 (2005) CrossRefADSMathSciNetGoogle Scholar
  18. M.A. Nowak, A. Sasaki et al., Nature 428, 646 (2004) CrossRefADSGoogle Scholar
  19. B.A. Huberman, N.S. Glance, Proc. Natl. Acad. Sci. USA 90, 7716 (1993) zbMATHCrossRefADSGoogle Scholar
  20. A.P. Hendry, M.T. Kinnison, Evolution 53, 1637 (1999) CrossRefGoogle Scholar
  21. A.P. Hendry, J.K. Wenburg et al., Science 290, 516 (2000) CrossRefADSGoogle Scholar
  22. T. Yoshida, L.E. Jones et al., Nature 424, 303 (2003) CrossRefADSGoogle Scholar
  23. A.N. Licht, Yale J. Int. Law 24, 61 (1999) Google Scholar
  24. P.A.P. Moran, The Statistical Processes of Evolutionary Theory (Clarendon, Oxford, 1962) Google Scholar
  25. A. Traulsen, J.C. Claussen et al., Phys. Rev. Lett. 95, 238701 (2005) CrossRefADSGoogle Scholar
  26. G. Szabo, G. Fáth (to be published) Google Scholar
  27. A. Rapoport, M. Guyer, General Systems 11, 203 (1966) Google Scholar
  28. W. Güth, R. Schmittberger et al., J. Econ. Behav. Org. 3, 367 (1982) CrossRefGoogle Scholar
  29. E. Fehr, U. Fischbacher et al., Nature 425, 785 (2003) CrossRefADSGoogle Scholar
  30. K.M. Page, M.A. Nowak, Bull. Math. Biol. 64, 1101 (2002) CrossRefGoogle Scholar
  31. A. Sánchez, J.A. Cuesta, J. Theor. Biol. 235, 233 (2005) CrossRefGoogle Scholar
  32. M.A. Rodríguez, J.A. Cuesta et al. (in preparation) Google Scholar
  33. A.S. Griffin, S.A. West et al., Nature 430, 1024 (2004) CrossRefADSGoogle Scholar
  34. S. Karlin, H.M. Taylor, A First Course in Stochastic Processes, 2nd ed. (Academic Press, London, 1975) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • C. P. Roca
    • 1
  • J. A. Cuesta
    • 1
  • A. Sánchez
    • 1
    • 2
  1. 1.Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de MatemáticasUniversidad Carlos III de Madrid, Avenida de la UniversidadMadridSpain
  2. 2.Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain

Personalised recommendations