Affinity driven social networks

  • B. Ruyú
  • M. N. Kuperman


In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.


European Physical Journal Special Topic Global Energy Preference List Stable Marriage Stable Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Gale, L.S. Shapley, Amer. Math. Monthly 69, 9 (1962) zbMATHCrossRefMathSciNetGoogle Scholar
  2. Th. M. Nieuwenhuizen, Physica A 252, 178 (1998) CrossRefMathSciNetGoogle Scholar
  3. A. Roth, M.A. Sotomayor, Econometrica 57, 559 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  4. A.E. Roth, Math. Oper. Res. 7, 617 (1982) zbMATHMathSciNetCrossRefGoogle Scholar
  5. A.E. Roth, J. Polit. Econ. 92, 991 (1984) CrossRefGoogle Scholar
  6. G. Demance, D. Gale, Econometrica 53, 873 (1985) CrossRefMathSciNetGoogle Scholar
  7. L.E. Dubins, D. Freeman, Amer. Math. Monthly 88, 485 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  8. H. Adachi, Econom. Lett. 68, 43 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  9. M.-J. Oméro, M. Dzierzawa, M. Marsili, Y.-C. Zhang, J. Phys. I (France) 7, 1723 (1997) CrossRefGoogle Scholar
  10. M. Dzierzawa, M.J. Oméro, Physica A 287, 321 (2000) CrossRefADSMathSciNetGoogle Scholar
  11. G. Caldarelli, A. Capocci, Physica A 300, 325 (2001) zbMATHCrossRefADSGoogle Scholar
  12. A. Lage-Castellanos, R. Mulet, Physica A 364, 389 (2006) CrossRefADSGoogle Scholar
  13. D. Gusfield, R.W. Irving, The stable marriage problem: structure and algorithms (MIT Press, Cambridge, MA, 1989) Google Scholar
  14. D.E. Knuth, Stable marriage and its relation to other combinatorial problems, CRM Proceedings & Lecture Notes, Vol. 10 (AMS, 1997) Google Scholar
  15. S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Science 220, 671 (1983) CrossRefADSMathSciNetGoogle Scholar
  16. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) CrossRefADSGoogle Scholar
  17. V. Latora, M. Marchiori, Phys. Rev. E. 87, 19871 (2001) Google Scholar
  18. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004) CrossRefADSGoogle Scholar
  19. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004) CrossRefADSGoogle Scholar
  20. M. Kuperman, Phys. Rev. E 73, 046139 (2006) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • B. Ruyú
    • 1
  • M. N. Kuperman
    • 2
  1. 1.Centro Atómico Bariloche and Instituto BalseiroS. C. de BarilocheArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasS. C. de BarilocheArgentina

Personalised recommendations