Advertisement

Relaxation dynamics and topology in the Hamiltonian Mean Field model

  • C. B. Tauro
  • G. Maglione
  • F. A. Tamarit
Article

Abstract.

In this work we analyze, for the Hamiltonian Mean Field model, the relationship between the existence of quasi-stationary long-standing trajectories and the topology of the potential energy, following the ideas recently introduced in the literature [CITE]. In particular, we study the way topology alters the distribution of momenta along the trajectories as well asthe long-time behavior of the system.

Keywords

European Physical Journal Special Topic Momentum Distribution Relaxation Dynamic Potential Energy Function Glassy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Tamarit, C.G. Maglione, C. Anteneodo, D. Stariollo, Phys. Rev. E 71, 036148 (2005) CrossRefADSMathSciNetGoogle Scholar
  2. M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995) CrossRefADSGoogle Scholar
  3. M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüller, B. von Issendorff, H. Haberland, Phys. Rev. Lett. 86, 1191 (2001) CrossRefADSGoogle Scholar
  4. M. Antoni, H. Hinrichsen, S. Ruffo, Chaos, Solit. Fract. 13, 393 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998); V. Latora, A. Rapisarda, S. Ruffo, Physica D 131, 38 (1999); V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 83, 2104 (1999); V. Latora, A. Rapisarda, S. Ruffo, Physica A 280, 81 (2000); V. Latora, A. Rapisarda, Chaos, Solit. Fract. 13, 401 (2001); V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001) CrossRefADSGoogle Scholar
  6. M.A. Montemurro, F.A. Tamarit, C. Anteneodo, Phys. Rev. E 67, 031106 (2003); A. Pluchino, V. Latora, A. Rapisarda, Physica D 193, 315 (2004); Physica A 338, 60 (2004); Phys. Rev. E 69, 056113 (2004) CrossRefADSGoogle Scholar
  7. D.H. Zanette, M.A. Montemurro, Phys. Rev. E 67, 031105 (2003); Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004); F. Baldovin, E. Orlandini, Phys. Rev. Lett. 96, 240602 (2006); F. Baldovin, E. Orlandini, Phys. Rev. Lett. 97, 100601 (2006) CrossRefADSGoogle Scholar
  8. C. Tsallis, J. Stat. Phys. 52, 479 (1988); Nonextensive Mechanics and Thermodynamics, edited by S. Abe and Y. Okamoto, Lect. Notes Phys. 560 (Springer, Berlin, 2001); in Non-Extensive Entropy-Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, Oxford, 2004) zbMATHCrossRefMathSciNetGoogle Scholar
  9. L. Casetti, E.G.D. Cohen, M. Pettini, Phys. Rev. Lett. 82, 4160 (1999); L. Casetti, E.G.D. Cohen, M. Pettini, Phys. Rev. E 65, 036112 (2002); L. Casetti, M. Pettini, E.G.D. Cohen, J. Stat. Phys. 111, 1091 (2003) CrossRefADSGoogle Scholar
  10. H. Yoshida, Phys. Lett. A 150, 262 (1990) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • C. B. Tauro
    • 1
  • G. Maglione
    • 1
  • F. A. Tamarit
    • 1
  1. 1.Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations