The European Physical Journal Special Topics

, Volume 142, Issue 1, pp 163–225 | Cite as

Dynamical neural networks: Modeling low-level vision at short latencies

The quest for the neural code of vision at the first milliseconds
  • L. PerrinetEmail author


Our goal is to understand the dynamics of neural computations in low-level vision. We study how the substrate of this system, that is local biochemical neural processes, could combine to give rise to an efficient and global perception. We will study these neural computations at different scales from the single-cell to the whole visual system to infer generic aspects of the under- lying neural code which may help to understand this cognitive ability. In fact, the architecture of cortical areas, such as the Primary Visual Cortex (V1), is massively parallel and we will focus on cortical columns as generic adaptive micro-circuits. To stress on the dynamical aspect of the processing, we will also focus on the transient response, that is during the first milliseconds after the presentation of a stimulus. In a generic model of a visual area, we propose to study the neural code as implementing visual pattern matching, that is as efficiently inverting a known model of image synthesis. A possible solution offered by the architecture of the visual pathways could be to represent at first on the surface of the cortical area how well the prototypical visual features are matched by a combination of inferential mechanisms as ideal observers. We studied the efficiency of this representation by rating the statistics of the output using natural scenes, that is scenes occurring frequently. We show that this may be finally used to provide a behavioral output such as an eye movement. However, constraints specific to the visual system imply that the set of prototypical features is not independent and that the cortical columns should communicate to produce an efficient, sparse solution. We will present efficient algorithms and representations based on the event-based nature of neural computations. By explicitely defining this efficiency, we propose then a simple implementation of Sparse Spike Coding using greedy inference mechanisms but also how the system may adapt in a unsupervised fashion. These computations may be implemented in simple models of neural networks by explicitly setting the lateral connectivity between populations of columns. Using natural scenes, this algorithm provides a model of V1 which exhibit prototypical properties of neural activities in that area. We show simple applications in the field of image processing as a quantitative method to evaluate these different cortical models.


European Physical Journal Special Topic Natural Image Primary Visual Cortex Neural Computation Neural Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–83 (2000) Google Scholar
  2. E. Adrian, The Basis of Sensation: The Action of Sense Organs (ChristoPhers., London, 1928) Google Scholar
  3. H. Akaike, IEEE Trans. Automat. Contr. 19, 716–23 (1974) zbMATHADSMathSciNetGoogle Scholar
  4. D.G. Albrecht, D.B. Hamilton, J. Neurophysiol. 48, 217–238 (1982) Google Scholar
  5. T.D. Albright, J. Neurophysiol. 52, 1106–30 (1984) Google Scholar
  6. L. Alvarez, Y. Gousseau, J.-M. Morel, The Size of Objects in Natural Images. Technical Report 9921, Centre de Mathématique et de Leurs Applications (1999) Google Scholar
  7. J.J. Atick, Network: Comput. Neural Syst. 3, 213–52 (1992) zbMATHGoogle Scholar
  8. G. Aubert, R. Deriche, P. Kornprobst, SIAM J. Appl. Math. 60, 156–82 (2000) MathSciNetGoogle Scholar
  9. W. Bair, C. Koch, Neural Comput. 8, 1185–1202 (1996) Google Scholar
  10. W. Bair, J.R. Cavanaugh, A. Movshon, J. Neurosci. 23, 7690–701 (2003) Google Scholar
  11. A.-L. Barabasi, E. Bonabeau, Sci. Am. 288, 50 (2003) Google Scholar
  12. H.B. Barlow, Netw.: Comput. Neural Syst. 12, 241–25 (2001) Google Scholar
  13. H.B. Barlow, Perception 1, 371–94 (1972) Google Scholar
  14. A. Basole, L.E. White, D. Fitzpatrick, Nature 423, 986–990 (2003) ADSGoogle Scholar
  15. P. Bayerl, H. Neumann, Neural Comput. 16, 2041–66 (2004) zbMATHGoogle Scholar
  16. T. Bayes, Phil. Trans. R. Soc. Lond. 53, 370–418 (1764) Google Scholar
  17. A.J. Bell, T.J. Sejnowski, Neural Comput. 7, 1129–59 (1995) Google Scholar
  18. A.J. Bell, T.J. Sejnowski, Vis. Res. 37, 3327–38 (1997) Google Scholar
  19. C.C. Bell, V.Z. Han, Y. Sugawara, K. Grant, Nature 387, 278–81 (1997) ADSGoogle Scholar
  20. G.-Q. Bi, M.-M. Poo, J. Neurosc i. 18, 10464–72 (1998) Google Scholar
  21. K.J. Blinowska, P.J. Durka, The application of wavelet transform and matching pursuit to the time-varying EEG signals, in edited by C.H. Dagli, B.R. Fernandez, Intelligent Engineering Systems through Artificial Neural Networks, Vol. 4 (ASME Press, New York, 1994), pp. 535–540, ISBN 0-7918-045-8 Google Scholar
  22. L.J. Borg-Graham, Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models, in Cerebral Cortex, Vol. 13, edited by P.S. Ulinski, E.G. Jones, A. Peters (Plenum Press, New York, 1999) Google Scholar
  23. K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Principien, dargestellt auf grund des Zellenbaues. (Johann Ambrosius Barth Verlag, Leipzig, 1909) Google Scholar
  24. J. Bullier, Brain Res. Rev. 36, 96–107 (2001) URL Google Scholar
  25. P.J. Burt, E.H. Adelson, IEEE Trans. Commun. (COM-31) 4, 532–40 (1983) Google Scholar
  26. S. Ramòn Cajal Y, Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1911) Google Scholar
  27. J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 8, 679–98 (1986) Google Scholar
  28. E. Capobianco, Comput. Stat. Data Anal. 42, 385–402 (2003) MathSciNetGoogle Scholar
  29. M. Carandini, J. Heeger, A. Movshon, J. Neurosci. 17, 8621–44 (1997) Google Scholar
  30. S. Castan, J. Zhao, J. Shen, Optimal Filter for Edge Detection Methods and Results, in In Proceedings of the First European Conference on Computer Vision (Eccv) (1990), pp. 13–7 Google Scholar
  31. J.R. Cavanaugh, W. Bair, A. Movshon, J. Neurophys. 88, 2530–46 (2002) URL Google Scholar
  32. S. Celebrini, S.J. Thorpe, Y. Trotter, M. Imbert, Vis. Neurosci. 5, 811–25 (1993) Google Scholar
  33. S. Chen, Basis pursuit. Ph.D. thesis, Stanford (1995) Google Scholar
  34. Y. Dan, J.J. Atick, R.C. Reid, J. Neurosci. 16, 3351–62 (1996) Google Scholar
  35. G. Davis, Adaptive Nonlinear Approximations, Ph.D. thesis, New York University, 1994 Google Scholar
  36. P. Dayan, L.F. Abbott, Theor. Neurosci. (The MIT Press, Cambridge, MA, 2001) Google Scholar
  37. D. Debanne, D. Shulz, Y. Frégnac, Can. J. Physiol. Pharmacol. 73, 1295–311 (1995) Google Scholar
  38. P. Degond, S. Mas-Gallic, Math. Comput. 53, 485–525 (1989) zbMATHADSMathSciNetGoogle Scholar
  39. A. Delorme, S.J. Thorpe, J. Comput. Neurosci. 15, 357–65 (2003) Google Scholar
  40. S. Denève, P.E. Latham, A. Pouget, Nat. Neurosci. 2, 740–5 (1999) Google Scholar
  41. R. Deriche, Int. J. Comput. Vis. 1, 167–87 (1987) Google Scholar
  42. M. Deweese, A. Zador, J. Neurosci. 23 (2003) Google Scholar
  43. W.D. Dong, J.J. Atick, Netw: Comput. Neural Sys. 6, 345–58 (1995) zbMATHGoogle Scholar
  44. P.J. Durka, D. Ircha, K.J. Blinowska, IEEE Trans. Sign. Proc. 49, 507–510 (2001) Google Scholar
  45. C. Enroth-Cugell, J.G. Robson, J. Physiol. 187, 517–23 (1966) Google Scholar
  46. D.J. Field, Opt. Soc. Am. A 4, 2379–94 (1987) ADSGoogle Scholar
  47. D.J. Field, Neural Comput. 6, 559–601 (1994) Google Scholar
  48. D.J. Field, A. Hayes, R.F. Hess, Vis. Res. 33, 173–93 (1993) Google Scholar
  49. S. Fischer, R. Redondo, L.U. Perrinet, G. Cristóbal, Efficient representation of natural images using local cooperation, in edited by R.A. Carmona, G. Linan-Cembrano, Perception, 34, of ECVP, 241 (2005) Google Scholar
  50. S. Fischer, G. Cristóbal, R. Redondo, IEEE Trans. Image Proc. 15, 265 (2006a) Google Scholar
  51. S. Fischer, F. Sroubek, L.U. Perrinet, R. Redondo, G. Cristóbal, Int. J. Comput. Vis. (2006b) Google Scholar
  52. W.J. Freeman, J.M. Barrie, Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex, in Temporal Coding in the Brain edited by Buzsáki G (Springer-Verlag, Berlin Heidelberg, 1994), pp. 13-37 Google Scholar
  53. J.H. Friedman, W. Stuetzle, J. Am. Stat. Associ. (1980) Google Scholar
  54. P. Fries, J.H. Schroder, P.R. Roelfsema, W. Singer, A.K. Engel, J. Neurosci. 22, 3739–54 (2002) Google Scholar
  55. P. Frossard, P. Vandergheynst, A Posteriori Quantized Matching Pursuit. IEEE Data Compression Conference (2001) Google Scholar
  56. W.S. Geisler, J.S. Perry, B.J. Super, D.P. Gallogly, Vis. Res. 41, 711–24 (2001) Google Scholar
  57. S. Georges, P. Seriès, Y. Frégnac, J. Lorenceau, Vis. Res. 42, 2757–72 (2002) Google Scholar
  58. A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Science 233, 1416–9 (1986) ADSGoogle Scholar
  59. C.D. Gilbert, T.N. Wiesel, Nature 280, 120–5 (1979) ADSGoogle Scholar
  60. R. Gribonval, P. Vandergheynst, IEEE Trans. Inf. Theory 52, 255–61 (2006) doi:10.1109/TIT.2005.860474 MathSciNetGoogle Scholar
  61. F. Grimbert, O. Faugeras, Analysis of Jansen's model of a single cortical column. Technical Report 5597, Projet Odyssée (2005) Google Scholar
  62. A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, A. Sterkin, Infvivo Modern Techniques in Neuroscience Research optical imaging of cortical architecture and dynamics, edited by U. Windhorst, H. Johansson (Springer Verlag, 2001) Google Scholar
  63. A. Grinvald, E.E. Lieke, R.D. Frostig, R. Hildesheim, J. Neurosci. 14, 2545–68 (1994) Google Scholar
  64. S. Grossberg, Behav. Cognit. Neurosci. Rev. 2, 47–76 (2003) Google Scholar
  65. S. Grossberg, A. Yazdanbakhsh, Vis. Res. 45, 1725–43 (2005) URL Google Scholar
  66. R. Guyonneau, R. VanRullen, S.J. Thorpe, Neural Comput. 17, 859–79 (2005) zbMATHGoogle Scholar
  67. R.H.R. Hahnloser, A.A. Kozhevnikov, M.S. Fee, Nature 419, 65–70 (2002) ADSGoogle Scholar
  68. H.K. Hartline, Am. J. Physiol. 130, 690–9 (1940) Google Scholar
  69. D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (New York, Wiley, 1949) Google Scholar
  70. G.H. Henry, B. Dreher, P.O. Bishop, J. Neurophysiol. 37, 1394–409 (1974) Google Scholar
  71. J.C. Horton, D.L. Adams, Philos. Trans. R. Soc. Lond. 360, 837–62 (2005) doi:10.1098/rstb.2005.1623 Google Scholar
  72. T. Hosoya, S.A. Baccus, M. Meister, Nature 436, 71–7 (2005) URL ADSGoogle Scholar
  73. D. Hubel, T. Wiesel, J. Physiol. 148, 574–91 (1959) Google Scholar
  74. D. Hubel, T. Wiesel, J. Physiol. 160, 106–54 (1962) Google Scholar
  75. D. Hubel, T. Wiesel, J. Physiol. 195, 215–44 (1968) Google Scholar
  76. D. Hubel, T. Wiesel, J. Physiol. 158, 295–306 (1974) Google Scholar
  77. D. Jancke, F. Chavane, Shmuel, Naaman, Nature 428, 423–6 (2004) ADSGoogle Scholar
  78. V.K. Jirsa, Neuroinformatics (2004) Google Scholar
  79. J.P. Jones, L.A. Palmer, J. Neurophysiol. 58, 1233–58 (1987) Google Scholar
  80. E.R. Kandel, J.H. Schwartz, T.M. Jessel, Principles of Neural Science' 4th edn. (McGraw Hill, New York, 2000) Google Scholar
  81. D. Kersten, P. Mamassian, A. Yuille, Ann. Rev. Psychol. 55, 271–304 (2003) Google Scholar
  82. C. Koch, (Ed.) Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, New York, 1998) Google Scholar
  83. C. Koch, I. Segevn, Nat. Neurosci. 3, 1171–7 (2000) Google Scholar
  84. T. Kohonen, Biol. Cybern. 43, 59–69 (1982) zbMATHMathSciNetGoogle Scholar
  85. I. Kovacs, P. Kozma, A. Feher, G. Benedek, Proc. Natl. Acad Sci. USA 96, 12204–12209 (1999) URL ADSGoogle Scholar
  86. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9, 112–47 (1998) zbMATHMathSciNetGoogle Scholar
  87. L. Lapicque, J. Physiol. (Paris) 9, 620–35 (1907) Google Scholar
  88. S.B. Laughlin, Z. Naturf. 9–10, 910–2 (1981) Google Scholar
  89. E. Le Pennec, S. Mallat, IEEE Trans. Image Proc. 14, 423 (2005) Google Scholar
  90. M.S. Lewicki, T.J. Sejnowski, Neural Comput. 12, 337–65 (2000) MathSciNetGoogle Scholar
  91. Z. Liu, J.P. Gaska, L.D. Jacobson, D.A. Pollen, Vis. Res. 32, 1193–8 (1992) Google Scholar
  92. N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Nature 412, 150–7 (2001) ADSGoogle Scholar
  93. D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms. (Cambridge University Press, 2003) URL Google Scholar
  94. P.C. Mahalanobis, Proc. Nat. Inst. Sci. Ind. 12, 49–55 (1936) Google Scholar
  95. Z.F. Mainen, T.J. Sejnowski, Nature 382, 363–366 (1996) ADSGoogle Scholar
  96. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, 1998) Google Scholar
  97. S. Mallat, W.L. Hwang, Singularity Detection And Processing with Wavelets. Technical report, Courant Institute of Mathematical Sciences (New York University, New York, 1991) Google Scholar
  98. S. Mallat, Z. Zhang, IEEE Trans. Sign. Proc. 41, 3397–3414 (1993) zbMATHGoogle Scholar
  99. P. Mamassian, Probabilistic Models of the Brain: Perception and Neural Function, Bayesian modelling of visual perception, in In Rao et al., 13–36 (2002) Google Scholar
  100. D. Marr, Phil. Trans. R. Soc. Lond. 290, 199–218 (1980) Google Scholar
  101. D. Marr, Vision (W.H. Freeman and Company, NY, 1982) Google Scholar
  102. S. Martinez-Conde, S.L. Macknik, D. Hubel, Nat. Neurosci. 3, 251–258 (2000) Google Scholar
  103. G.S. Masson, J. Physiol. (Paris) 98, 35–52 (2004) ADSGoogle Scholar
  104. G.S. Masson, E. Castet, J. Neurosci. 22, 5149–63 (2002) Google Scholar
  105. G.S. Masson, D.R. Mestre, F. Martineau, C. Soubrouillard, C. Brefel, O. Rascol, O. Blin, Behav. Brain Res. 108, 169–80 (2000) Google Scholar
  106. F. Metelli, Sci. Am. 230, 90–8 (1974) Google Scholar
  107. W. Metzger, Gesetze des Sehens (Verlag Waldemar Kramer, Frankfurt, 1936) Google Scholar
  108. C. Monier, F. Chavane, P. Baudot, L.J. Graham, Y. Frégnac, Neuron 37, 663–80 (2003) Google Scholar
  109. A. Montagnini, P. Mamassian, L.U. Perrinet, E. Castet, G.S. Masson, Bayesian modeling of dynamic motion integration. In 1ère conférence francophone NEUROsciences COMPutationnelles (NeuroComp, 2006) Google Scholar
  110. V.B. Mountcastle, J. Neurophysiol. 20, 408–434 (1957) Google Scholar
  111. V.B. Mountcastle, Perceptual neuroscience: the cerebral cortex (1998) Google Scholar
  112. K.I. Naka, W.A. Rushton, J. Physiol. 185, 587–99 (1966) Google Scholar
  113. R. Neff, A. Zakhor, IEEE Trans. CSVT 7, 158–71 (1997) Google Scholar
  114. E. Oja, J. Math. Biol. 15, 267–273 (1982) zbMATHMathSciNetGoogle Scholar
  115. B.A. Olshausen, What is the other 85% of V1 doing? in and J. Leo van Hemmen, T.J. Sejnowski, Problems in Systems Neuroscience (Oxford University Press, 2004) Google Scholar
  116. B.A. Olshausen, D.J. Field, Vis. Res. 37, 3311–25 (1998) Google Scholar
  117. G.A. Orban, D. Van Essen, W. Vanduffel, Trends Cogn. Sci. 8, 315–324 (2004) URL Google Scholar
  118. K.J. O'Regan, A. Noë, Behav. Brain Sci. 24 (2001) Google Scholar
  119. C.C. Pack, A.J. Gartland, R.T. Born, J. Neurosci. 24, 3268–80 (2004) doi:10.1523/JNEUROSCI.4387-03.2004 URL Google Scholar
  120. Y. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers (1993) Google Scholar
  121. A.E.C. Pece, J. Math. Imag. Vis. 17, 89–108 (2002) zbMATHMathSciNetGoogle Scholar
  122. L.U. Perrinet, Nat. Comput. 3, 159–75 (2004a) doi:10.1023/B:NACO.0000027753.27593.a7 URL Google Scholar
  123. L.U. Perrinet, J. Physiol. Paris 98, 530–9 (2004) doi:10.1016/j.jphysparis.2005.09.012 URL URL Google Scholar
  124. L.U. Perrinet, Efficient Source Detection Using Integrate-and-Fire Neurons, ICANN 2005, LNCS 3696 Lecture Notes in Computer Science, edited by W. Duch et al. (Springer, Berlin Heidelberg, 2005), pp. 167–72, URL Google Scholar
  125. L.U. Perrinet, An efficiency razor for model selection and adaptation in the primary visual cortex. In CNS (2006) URL Google Scholar
  126. L.U. Perrinet, Apprentissage hebbien d'un reseau de neurones asynchrone a codage par rang. Technical report, Rapport de stage du DEA de Sciences Cognitives, CERT, Toulouse, France (1999) Google Scholar
  127. L.U. Perrinet, M. Samuelides, S. Thorpe, Neurocomputing 57C, 125–34 (2002) URL Special Issue: New Aspects in Neurocomputing: 10th European Symposium on Artificial Neural Networks 2002, edited by T. Villmann Google Scholar
  128. L.U. Perrinet, M. Samuelides, S. Thorpe, Coding static natural images using spiking event times: do neurons cooperate? IEEE Trans. Neural Networks, Special Issue on Temporal Coding for Neural Information Processing, 15, 1164–75 (2004) ISSN 1045-9227 URL URL Google Scholar
  129. L.U. Perrinet, F. Barthélemy, E. Castet, G.S. Masson, Dynamics of motion representation in short-latency ocular following: a two-pathways bayesian model, Perception, Vol. 34, edited by A. Ricardo Carmona, Gustavo Linan-Cembrano, of ECVP (2005), p. 38 Google Scholar
  130. L.U. Perrinet, F.V. Barthélemy, G.S. Masson, Input-output transformation in the visuo-oculomotor loop: modeling the ocular following response to center-surround stimulation in a probabilistic framework. In 1ère conférence francophone NEUROsciences COMPutationnelles – NeuroComp (2006) URL Google Scholar
  131. J. Petitot, J. Physiol. (Paris) 97, 265–309 (2003) URL Google Scholar
  132. A. Pouget, Dynamic remapping, 2nd edn., edited by M.A. Arbib, in The Handbook of Brain Theory and Neural Networks (The MIT Press, Cambridge, MA, 2002) Google Scholar
  133. C. Poynton, Frequently Asked Questions about Gamma, Technical report (1999) Google Scholar
  134. D. Purves, R.B. Lotto, Why We See What We Do: An Empirical Theory of Vision (Sinauer Associates, Sunderland, Massachusetts, 2003) doi ISBN: 0-878-93752-8 Google Scholar
  135. R.P.N. Rao, B.A. Olshausen, M.S. Lewicki, (Eds.) Probabilistic Models of the Brain: Perception and Neural Function, (MIT Press, 2002) Google Scholar
  136. R. Redondo, S. Fischer, L.U. Perrinet, G. Cristóbal, Modeling of simple cells through a sparse overcomplete gabor wavelet representation based on local Perception, Vol. 34 of ECVP inhibition and facilitations, edited by R.A. Carmona, G. Linan-Cembrano (2005), p. 238 Google Scholar
  137. D.L. Ringach, J. Neurophysiol. 88, 455–63 (2002) Google Scholar
  138. D.L. Ringach, R.M. Shapley, M.J. Hawken, J. Neurosci. 22, 5639–51 (2002) Google Scholar
  139. R.W. Rodieck, Vis. Res. 5, 583–601 (1965) Google Scholar
  140. E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault F. Varela, Nature 397, 430–3 (1999) ADSGoogle Scholar
  141. F. Rosenblatt, Proc. I.R.E. 20, 167–192 (1960) MathSciNetGoogle Scholar
  142. D.L. Ruderman, W. Bialek, Phys. Rev. Lett. 73, 551–8 (1994) Google Scholar
  143. P.A. Salin, J. Bullier, Physiol. Rev. 75, 1107–54 (1995) Google Scholar
  144. P. Sallee, B.A. Olshausen, Learning sparse multiscale image representations, Vol. 15, edited by M.I. Jordan, M.J. Kearns, S.A. Solla, in Advances in neural information processing systems (The MIT Press, Cambridge, MA, 2003), pp. 1327–34 Google Scholar
  145. O. Schwartz, E. Simoncelli, Nat. Neurosci. 4, 819–25 (2001) Google Scholar
  146. B. Sen, S. Furber, Information recovery from rank-order encoded images, in Workshop on Biologically Inspired Information Fusion University of Surrey (2006) Google Scholar
  147. P. Seriès, S. Georges, J. Lorenceau, Y. Frégnac, Vis. Res. 42, 2781–97 (2002) Google Scholar
  148. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, Urbana, 1964) Google Scholar
  149. R.N. Shepard, J. Metzler, Science 171, 701–4 (1970) ADSGoogle Scholar
  150. C.S. Sherrington, J. Physiol. 34, 1–50 (1906) URL Google Scholar
  151. M. Sigman, G.A. Cecchi, C.D. Gilbert, M.O. Magnasco, Proc. Nat. Acad. Sci. USA 98, 1935–40 (2001) ADSGoogle Scholar
  152. E.P. Simoncelli, W.T. Freeman, The Steerable Pyramid: A Flexible Architecture for Multi-Scale Derivative Computation. In Second International Conf. on Image Processing (Washington, DC, October, 1995) Google Scholar
  153. E.P. Simoncelli, B.A. Olshausen, Annu. Rev. Neurosci. 24, 1193–216 (2001) URL Google Scholar
  154. M.V. Srinivasan, S.B. Laughlin, A Dubs, Proc. R. Soc. Lond. B 216, 427–59 (1982) ADSGoogle Scholar
  155. A. Turiel, G. Mato, N. Parga, J.-P. Nadal, Self-similarity properties of natural images, Vol. 10, edited by M.I. Jordan, M.J. Kearns, S.A. Solla Advances in Neural Information Processing Systems (The MIT Press, Cambridge, MA, 1998) Google Scholar
  156. J.H. van Hateren, Vis. Res. 33, 257–67 (1993) Google Scholar
  157. J.H. van Hateren, A. van der Schaaf, Phil. Trans. R. Soc. Lond. B 265, 359–66 (1998) Google Scholar
  158. R. van Rullen, S.J Thorpe, Neural Comput. 13, 1255–83 (2001) zbMATHGoogle Scholar
  159. T. Viéville, P. Kornprobst, Modeling cortical maps with feed-backs. In International Joint Conference on Neural Networks (2006) Google Scholar
  160. H. von Helmholtz, Treatise on Physiological Optics, Vol. 3 (Optical Society of America, New York, 1925) Google Scholar
  161. M.J. Wainwright, O. Schwartz, E.P. Simoncelli, Natural image statistics and divisive normalization: modeling nonlinearities and adaptation in cortical neurons in Statistical Theories of the Brain, edited by R. Rao, B. Olshausen, M. Lewicki (The MIT Press, 2001) Google Scholar
  162. Y. Weiss, E.P. Simoncelli, E.H. Adelson, Nat. Neurosci. 5, 598–604 (2002) URL Google Scholar
  163. L. Wiskott, T.J. Sejnowski, Neural Comput. 14, 715–770 (2002) zbMATHGoogle Scholar
  164. R.S. Zemel, T.J. Sejnowski, J. Neurosci. 18, 531–47 (1998) Google Scholar
  165. B. Cessac, M. Samuelides, Eur. Phys. J. Special Topics 142, 7–88 (2007) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Team, INCM/CNRS (UMR 6193)Marseille Cedex 20France

Personalised recommendations