The European Physical Journal Special Topics

, Volume 141, Issue 1, pp 127–132 | Cite as

Diffusion of CO2 in NaY and NaX Faujasite systems: Quasi-elastic neutron scattering experiments and molecular dynamics simulations

  • D. Plant
  • H. Jobic
  • P. Llewellyn
  • G. Maurin


The diffusion of carbon dioxide in both NaX and NaY Faujasite systems is investigated by combining Quasi-Elastic Neutron Scattering (QENS) and Molecular Dynamics (MD) simulations. The transport diffusivity evaluated experimentally increases with the loading whereas the simulated self diffusivity decreases. This general behaviour is in good agreement with those previously reported in the literature for different gases in similar zeolites systems. It was also shown that the corrected diffusivity exhibits a significant concentration dependence. At low loading, the activation energies for diffusion derived from QENS and MD simulations are in agreement. They increase from NaY to NaX due to a stronger interaction between the CO2 molecules and the extra-framework cations. The extrapolation of the transport and self diffusivities to zero coverage allowed us to emphasize a good agreement between experiment and simulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.M. Meier, D.H. Olson, Atlas of Zeolite Structures, Structure Commission of the International Zeolite Association (Elsevier, Amsterdam, 1978) Google Scholar
  2. R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15, 279 (2001) CrossRefGoogle Scholar
  3. G. Maurin, P.L. Llewellyn, Th. Poyet, B. Kuchta, J. Phys. Chem. B 109, 125 (2005) CrossRefGoogle Scholar
  4. J. Kärger, D. Ruthven, Diffusion in Zeolites and Other Microporous Materials (John Wiley & Sons, New York, 1992) Google Scholar
  5. H. Jobic, Curr. Opin. Solid State Mater. Sci. 6, 415 (2003) CrossRefGoogle Scholar
  6. H. Jobic, A.I. Skoulidas, D.S. Sholl, J. Phys. Chem. B 108, 10613 (2004) CrossRefGoogle Scholar
  7. R. Valiulin, P. Kortunov, J. Kärger, V. Timoshenko, J. Chem. Phys. 120, 11804 (2004) CrossRefADSGoogle Scholar
  8. J. Kärger, R. Valiullin, S. Vasenkov, New J. Phys. 7, 15 (2005) CrossRefGoogle Scholar
  9. P. Demontis, G.B. Suffritti, Chem. Rev. 97, 2845 (1997) CrossRefGoogle Scholar
  10. E.J. Maginn, A.T. Bell, D.N. Theodorou, J. Phys. Chem. 100, 5923 (1996) CrossRefGoogle Scholar
  11. H. Jobic, N. Laloué, C. Laroche, J.M. van Baten, R. Krishna, J. Phys. Chem. B 110, 2195 (2006) CrossRefGoogle Scholar
  12. L. Zhu, K. Seff, J. Phys. Chem. B 103, 9512 (1999) CrossRefGoogle Scholar
  13. A.N. Fitch, H. Jobic, A. Renouprez, J. Phys. Chem. B 90, 1311 (1986) CrossRefGoogle Scholar
  14. G. Maurin, P.L. Llewellyn, R.G. Bell, J. Phys. Chem. B 109, 16084 (2005) CrossRefGoogle Scholar
  15. W. Smith, T.R. Forester, J. Mol. Graph. 14, 136 (1996) CrossRefGoogle Scholar
  16. S.S. Chong, H. Jobic, M. Plazanet, D.S. Sholl, Chem. Phys. Lett. 408, 157 (2005) CrossRefGoogle Scholar
  17. J. Kärger, H. Pfeifer, F. Stallmach, N.N. Feoktistova, S.P. Zhdanov, Zeolites 13, 50 (1993) CrossRefGoogle Scholar
  18. A.I. Skoulidas, D.S. Sholl, J. Phys. Chem. B 106, 5058 (2002) CrossRefGoogle Scholar
  19. G.K. Papadopoulos, H. Jobic, D.N. Theodorou, J. Phys. Chem. B 108, 12748 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • D. Plant
    • 1
    • 2
  • H. Jobic
    • 3
  • P. Llewellyn
    • 2
  • G. Maurin
    • 1
  1. 1.Laboratoire de Physicochimie de la Matière Condensée UMR CNRS 5617, Université Montpellier IIMontpellier Cedex 05France
  2. 2.Laboratoire Madirel, UMR CNRS 6121, Université de ProvenceMarseille Cedex 20France
  3. 3.Institut de Recherches sur la Catalyse, CNRSVilleurbanneFrance

Personalised recommendations