Skip to main content
Log in

Solitary wave solitons to one model in the shallow water waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The current study utilizes the generalized \(\tan (K(\rho )/2)\)-expansion method, the generalized \(\tanh \)-\(\coth \) method and He’s semi-inverse variational method in constructing various soliton and other solutions to the (2+1)-dimensional coupled variant Boussinesq equations which describes the elevation of water wave surface for slowly modulated shallow water waves in lakes and ocean beaches. The system represents collision of a nonlinear wave propagating along y-axis and long wave along x-axis. The integration mechanism that was adopted is modified direct algebraic method, which extracts different solitons (dark and singular) and combo (dark-singular) solitons for different values of parameters. The existence criteria for solitons production is also established for both Kerr and power nonlinearities. Additionally, some other solutions known as singular periodic and rational are also emerged in the process of derivation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.L. Sachs, On the integrable variant of the boussinesq system: Painlevé property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy. Physica D: Nonlinear Phenomena 30, 1–27 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P.J. Olver, Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc. 85, 143–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method. Zeitschrift fr Naturforschung A 64a, 420–30 (2009)

    Article  ADS  Google Scholar 

  4. M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–98 (2010)

    MathSciNet  MATH  Google Scholar 

  5. M.M. Rashidi, T. Hayat, T. Keimanesh, H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method. Heat Transf.-Asian Res. 42, 31–45 (2013)

    Article  Google Scholar 

  6. M. Dehghan, J. Manafian, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–53 (2011)

    Article  MathSciNet  Google Scholar 

  7. M. Dehghan, J. Manafian, A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Modern Phys. B 25, 2965–81 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. Manafian, M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015)

    Article  Google Scholar 

  9. J. Manafian, On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)

    Article  Google Scholar 

  10. A. Biswas, 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Lett. 22, 1775–1777 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bekir, E. Aksoy, Exact solutions of shallow water wave equations by using the (G’/G)-expansion method. Waves Random Complex Media 22, 317–331 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J. Manafian, M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the \(G^{\prime }/G\)-expansion method. Pramana 130, 31–52 (2015)

    Article  ADS  Google Scholar 

  13. J. Manafian, M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015 (2015). https://doi.org/10.1155/2015/107978, Article ID 107978, 35 pages

  14. J. Manafian, M. Lakestani, Application of \(tan(\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016)

    Article  ADS  Google Scholar 

  15. J. Manafian, M. Lakestani, A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 2, 243–268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Manafian, M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Optical Quantum Electron. 48, 116 (2016)

    Article  Google Scholar 

  17. J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(tan(\phi /2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  ADS  Google Scholar 

  18. J. Manafian, M. Lakestani, Abundant soliton solutions for the Kundu–Eckhaus equation via \(tan(\phi /2)\)-expansion method. Optik 127, 5543–5551 (2016)

    Article  ADS  Google Scholar 

  19. H.M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-Dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media 26, 201–208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Manafian, M.F. Aghdaei, M, Zadahmad, Analytic study of sixth-order thin-film equation by \(tan(\phi /2)\)-expansion method. Opt. Quant. Elec. 48, 1–16 (2016)

    Article  Google Scholar 

  21. M.F. Aghdaei, J. Manafian, Optical soliton wave solutions to the resonant Davey–Stewartson system. Opt. Quant. Elec. 48, 1–33 (2016)

    Article  Google Scholar 

  22. J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations. Comput. Math. Appl. 76, 1246–1260 (2018)

  23. M.R. Foroutan, J. Manafian, A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation. Nonlinear Dyn. 92, 2077–2092 (2018)

  24. C.T. Sendi, J. Manafian, H. Mobasseri, M. Mirzazadeh, Q. Zhou, A. Bekir, Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics. Nonlinear Dyn. 95, 669–84 (2018)

  25. J. Manafian, B. Mohammadi Ivatlo, M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation. Appl. Math. Comput. 13, 13–41 (2019)

    MathSciNet  MATH  Google Scholar 

  26. O.A. Ilhan, J. Manafian, M. Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation. Comput. Math. Appl. 78, 2429–2448 (2019)

  27. W.X. Ma, Z. Zhu, Solving the \((3+1)\)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  28. M. Wang, X. Li, J. Zhang, Two-soliton solution to a generalized KP equation with general variable coefficients. Appl. Math. Let. 76, 21–27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Kumar, A.K. Tiwari, R. Kumar, Some more solutions of Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 2599–2607 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.Q. Zhao, W.X. Ma, Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Zhang, Y. Chen, Y. Zhang, Breather, lump and \(X\) soliton solutions to nonlocal KP equation. Comput. Math. Appl. 74, 2341–2347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Chakravarty, T. McDowell, M. Osborne, Numerical studies of the KP line-solitons. Commun. Nonlinear Sci. Numer. Simulat. 44, 37–51 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A.J.M. Jawada, M.D. Petković, P. Laketa, A. Biswasc, Dynamics of shallow water waves with Boussinesq equation. Scientia Iranica B 20, 179–184 (2013)

    Google Scholar 

  34. A. Jabbari, H. Kheiri, A. Bekir, Analytical solution of variant Boussinesq equations. Math. Meth. Appl. Sci. 37, 931–936 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Wang, Y.T. Gao, F.H. Qi, Multi-solitonic solutions for the variable-coefficient variant Boussinesq model of the nonlinear water waves. J. Math. Anal. Appl. 372, 110–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Naz, F.M. Mahomed, T. Hayat, Conservation laws for third-order variant Boussinesq system. Appl. Math. Let. 23, 883–886 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Singh, R.K. Gupta, Exact solutions of a variant Boussinesq system. Int. J. Eng. Sci. 44, 1256–1268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Khan, M.A. Akbar, Study of analytical method to seek for exact solutions of variant Boussinesq equations. SpringerPlus 3, 1–17 (2014)

    Article  Google Scholar 

  39. H. Triki, A. Chowdhury, A. Biswas, Solitary wave and shock wave solutions of the variants of Boussinesq equations. U.P.B. Sci. Bull., Ser. A 75, 39–52 (2013)

    MathSciNet  Google Scholar 

  40. H. Li, L. Ma, D. Feng, Single-peak solitary wave solutions for the variant Boussinesq equations. Pramana J. Phys. 80, 933–944 (2013)

    Article  ADS  Google Scholar 

  41. J.H. He, Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. B. 20, 1141–1199 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R. Kohl, D. Milovic, E. Zerrad, A. Biswas, Optical solitons by He’s variational principle in a non-Kerr law media. J. Infrared Milli. Terahertz Waves 30(5), 526–537 (2009)

    Article  Google Scholar 

  43. J. Zhang, Variational approach to solitary wave solution of the generalized Zakharov equation. Comput. Math. Appl. 54, 1043–1046 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Biswas, D. Milovic, M. Savescu, M.F. Mahmood, K.R. Khan, Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger equation by semi-inverse variational principle. J. Nonlinear Opt. Phys. Mater. 21(4), 1250054 (2012)

    Article  ADS  Google Scholar 

  45. A. Biswas, S. Johnson, M. Fessak, B. Siercke, E. Zerrad, S. Konar, Dispersive optical solitons by semi-inverse variational principle. J. Modern Opt. 59(3), 213–217 (2012)

    Article  ADS  Google Scholar 

  46. R. Sassaman, A. Heidari, A. Biswas, Topological and nontopological solitons of nonlinear Klein-Gordon equations by He’s semi-inverse variational principle. J. Franklin Inst. 347, 1148–1157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. A.R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrodinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Alp Ilhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilhan, O.A., Manafian, J., Baskonus, H.M. et al. Solitary wave solitons to one model in the shallow water waves. Eur. Phys. J. Plus 136, 337 (2021). https://doi.org/10.1140/epjp/s13360-021-01327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01327-w

Navigation