Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characteristics of higher-order vector rogue waves to a coupled fourth-order nonlinear Schrödinger system in a two-mode optical fiber

  • 18 Accesses

Abstract

Optical fiber communication serves a significant role in recent communication. Investigated in the work is a coupled fourth-order nonlinear Schrödinger system for the ultrashort optical pulses in a two-mode optical fiber. For the complex envelopes of two field polarization components, we work out the Darboux transformation and higher-order vector rogue-wave solutions. The second-order vector rogue waves with the triangle structure, each component of which is composed of three four-petaled rogue waves, are shown. With the strength of the higher-order linear and nonlinear effects increasing, width of the triangle structure along the distance axis decreases, while width of the triangle structure along the time axis increases. We obtain the second-order vector rogue waves with the merged structure and the third-order vector rogue waves with the triangle and pentagon structures. We expect that our results could be helpful in studying the rogue-wave phenomena in the nonlinear optics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    The Lax pair in Ref. [47] is different from that in Refs. [45, 46].

References

  1. 1.

    S.C. Gupta, Textbook on Optical Fiber Communication and Its Applications (Prentice Hall of India, New Delhi, 2018)

  2. 2.

    Y. Yu, W. Wang, X. Ouyang, Z. Wang, J. Zhao, IEEE Photonics Technol. Lett. 30, 91 (2018)

  3. 3.

    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2007)

  4. 4.

    A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973)

  5. 5.

    A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973)

  6. 6.

    D. Mihalache, Rom. Rep. Phys. 69, 403 (2017)

  7. 7.

    W.R. Sun, L. Wang, X.Y. Xie, Phys. A 499, 58 (2018)

  8. 8.

    J. Wei, X. Wang, X. Geng, Commun. Nonlinear Sci. Numer. Simul. 59, 1 (2018)

  9. 9.

    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

  10. 10.

    V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

  11. 11.

    Y.J. Feng, Y.T. Gao, L.Q. Li, T.T. Jia, Applicable Analysis, in press. https://doi.org/10.1080/00036811.2019.1652734

  12. 12.

    X.Y. Xie, G.Q. Meng, Eur. Phys. J. Plus 134, 359 (2019)

  13. 13.

    T.T. Jia, Y.T. Gao, Y.J. Feng, L. Hu, J.J. Su, L.Q. Li, C.C. Ding, Nonlinear Dyn. 96, 229 (2019)

  14. 14.

    T.T. Jia, Y.T. Gao, G.F. Deng, L. Hu, Nonlinear Dyn. 98, 269 (2019)

  15. 15.

    G.F. Deng, Y.T. Gao, J.J. Su, C.C. Ding, T.T. Jia, Nonlinear Dyn. 99, 1039 (2020)

  16. 16.

    B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J.M. Dudley, Sci. Rep. 2, 463 (2012)

  17. 17.

    D. Benney, A. Newell, Stud. Appl. Math. 46, 133 (1967)

  18. 18.

    X. Wang, L. Wang, Comput. Math. Appl. 75, 4201 (2018)

  19. 19.

    H. Bailung, Y. Nakamura, J. Plasma Phys. 50, 231 (1993)

  20. 20.

    X.Y. Gao, Appl. Math. Lett. 91, 165 (2019)

  21. 21.

    Z. Yan, Phys. Lett. A 375, 4274 (2011)

  22. 22.

    C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)

  23. 23.

    Z. Lan, Appl. Math. Lett. 94, 126 (2019)

  24. 24.

    X. Wang, J. Wei, L. Wang, J. Zhang, Nonlinear Dyn. 97, 343 (2019)

  25. 25.

    S. Chen, J.M. Soto-Crespo, F. Baronio, P. Grelu, D. Mihalache, Opt. Express 24, 15251 (2016)

  26. 26.

    Y. Zhu, W. Qin, J.T. Li, J.Z. Han, C.Q. Dai, Y.Y. Wang, Nonlinear Dyn. 88, 1883 (2017)

  27. 27.

    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

  28. 28.

    B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudely, Nat. Phys. 6, 790 (2010)

  29. 29.

    S. Chen, J.M. Soto-Crespo, P. Grelu, Opt. Express 22, 27632 (2014)

  30. 30.

    B. Frisquet, B. Kibler, Ph Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Sci. Rep. 6, 20785 (2016)

  31. 31.

    F. Baronio, M. Conforti, C.D. Angelis, A. Degasperis, M. Andreana, V. Couderc, A. Barthélémy, Phys. Rev. Lett. 104, 113902 (2010)

  32. 32.

    F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, Phys. Rev. Lett. 111, 114101 (2013)

  33. 33.

    A. Degasperis, S. Lombardo, Phys. Rev. E 88, 052914 (2013)

  34. 34.

    N. Akhmediev, B. Kibler, F. Baronio et al., J. Opt. 18, 063001 (2016)

  35. 35.

    S. Chen, F. Baronio, J.M. Soto-Crespo, P. Grelu, D. Mihalache, J. Phys. A Math. Theor. 50, 463001 (2017)

  36. 36.

    F.P. Chen, W.Q. Chen, L. Wang, Z.J. Ye, Appl. Math. Lett. 96, 33 (2019)

  37. 37.

    X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett., in press, Article 106170, https://doi.org/10.1016/j.aml.2019.106170

  38. 38.

    J.J. Su, Y.T. Gao, G.F. Deng, T.T. Jia, Phys. Rev. E 100, 042210 (2019)

  39. 39.

    C.C. Ding, Y.T. Gao, G.F. Deng, Nonlinear Dyn. 97, 2023 (2019)

  40. 40.

    J. Wei, X.G. Geng, X. Zeng, Trans. Am. Math. Soc. 371, 1483 (2019)

  41. 41.

    X.Y. Xie, S.K. Yang, C.H. Ai, L.C. Kong, Phys. Lett. A, in press. https://doi.org/10.1016/j.physleta.2019.126119

  42. 42.

    K. Porsezian, P.S. Sundaram, A. Mahalingam, Phys. Rev. E 50, 1543 (1994)

  43. 43.

    Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. 23, 5610 (1987)

  44. 44.

    Z.Z. Lan, Appl. Math. Lett. 98, 128 (2019)

  45. 45.

    D.Y. Liu, B. Tian, X.Y. Xie, Mod. Phys. Lett. B 31, 1750067 (2017)

  46. 46.

    W.R. Sun, D.Y. Liu, X.Y. Xie, Chaos 27, 043114 (2017)

  47. 47.

    Z. Zhang, B. Tian, L. Liu, Y. Sun, Z. Du, Eur. Phys. J. Plus 134, 129 (2019)

  48. 48.

    G. Zhang, Z. Yan, Proc. R. Soc. A 475, 20180625 (2019)

  49. 49.

    G. Zhang, Z. Yan, Commun. Nonlinear Sci. Numer. Simul. 62, 117 (2018)

  50. 50.

    B. Guo, L. Ling, Q. Liu, Phys. Rev. E 85, 026607 (2012)

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017 and 11805020, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Correspondence to Bo Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Tian, B., Qu, Q. et al. Characteristics of higher-order vector rogue waves to a coupled fourth-order nonlinear Schrödinger system in a two-mode optical fiber. Eur. Phys. J. Plus 135, 241 (2020). https://doi.org/10.1140/epjp/s13360-020-00240-y

Download citation