Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Tunable coherent perfect absorption via an asymmetric graphene-based structure

  • 18 Accesses


In this research, the optical absorption condition in a nanostructure slab consisting of three layers of graphene is theoretically investigated. This structure is distinct from the previous models and is a geometrically asymmetric structure. By means of Maxwell equations and the appropriate boundary conditions in the present model, the absorption coefficient is calculated. One of the most important features of this absorbent is owning \(100\%\) absorption at the incident angles smaller than reported in the previous works that makes this nanostructure much more applicable in integrated carbon-based photonics, especially graphene-based photodetectors. In this structure, one can reduce the incident angle which leads to coherent perfect absorption (CPA) at \(16.29^{\circ }\). Furthermore, by doing the optimization analysis, the optimal parameters for achieving the CPA condition are estimated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: a comprehensive review. Curr Drug Targets 18(6), 724–733 (2017)

  2. 2.

    W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)

  3. 3.

    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

  4. 4.

    G. Chucai, Z. Jianfa, X. Wei, L. Ken, Y. Xiaodong, Q. Shiqiao, Z. Zhihong, Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications. Nanomaterials 8(12), 1033 (2018)

  5. 5.

    A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

  6. 6.

    V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 315(5816), 1252–1255 (2007)

  7. 7.

    L. Ming, Y. Xiaobo, U.-A. Erick, G. Baisong, Z. Thomas, J. Long, W. Feng, Z. Xiang, A graphene-based broadband optical modulator. Nature 474(7349), 64 (2011)

  8. 8.

    A. Andryieuski, A.V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21(7), 9144–9155 (2013)

  9. 9.

    C.H. Liu, Y.-Ch. Chang, Th. B. Norris, Zh. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273

  10. 10.

    F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839 (2009)

  11. 11.

    S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Kim, Y. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010)

  12. 12.

    M. Currie, J.D. Caldwell, F.J. Bezares, J. Robinson, T. Anderson, H. Chun, M. Tadjer, Quantifying pulsed laser induced damage to graphene. Appl. Phys. Lett. 99, 211909 (2011)

  13. 13.

    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon modification thresholds and morphology. Appl. Phys. A 74(1), 19–25 (2002)

  14. 14.

    G. Xing, H. Guo, X. Zhang, T.C. Sum, C.H.A. Huan, The physics of ultrafast saturable absorption in graphene. Opt. Express 18(15), 4564–4573 (2010)

  15. 15.

    T. Naseri, M. Balaei, Y. Kakavand, Convenient dual optical bistability in cavity-free structure based on nonlinear graphene-plasmonic nanoparticles composite thin layers. OSA Continuum 2, 2401–2412 (2019)

  16. 16.

    T. Naseri, N. Daneshfar, M. Moradi-Dangi, F. Eynipour-Malaee, Terahertz optical bistability of graphene-coated cylindrical core-shell nanoparticles. J. Theor. Appl. Phys. 12, 257 (2018)

  17. 17.

    N. Daneshfar, T. Naseri, M. Jalilian, Effect of gain medium and graphene on the resonance energy transfer between two molecules positioned near a plasmonic multilayer nanoparticle. Phys. Plasmas 25(9), 093301 (2018)

  18. 18.

    T. Naseri, M. Balaei, Enhanced nonlinear optical response of core-shell graphene-wrapped spherical nanoparticles. JOSA B 35(9), 2278–2285 (2018)

  19. 19.

    F. Xiong, J. Zhou, W. Xu, Z. Zhu, X. Yuan, J. Zhang, S. Qin, Visible to near-infrared coherent perfect absorption in monolayer graphene. J. Opt. 20(9), 095401 (2018)

  20. 20.

    T. Stauber, N. Peres, A. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8), 085432 (2008)

  21. 21.

    L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129(1), 012004 (2008)

  22. 22.

    M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Hermann, A. Klang, W.S. Andrews, G. Strasser, Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012)

  23. 23.

    J. Zhang, Z. Zhu, W. Liu, X. Yuan, S. Qin, Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering. Nanoscale 7(32), 13530–13536 (2015)

  24. 24.

    S. Song, S.Q. Chen, L. Jin, F. Sun, Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5(20), 9615–9619 (2013)

  25. 25.

    J. Piper, V. Liu, S. Fan, Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104(25), 251110 (2014)

  26. 26.

    C. Guo, Z. Zhu, X. Yuan, W. Ye, K. Liu, J. Zhang, W. Xu, S. Qin, Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv. Opt. Mater. 4(12), 1955–1960 (2016)

  27. 27.

    H. Noh, Y. Chong, A. Stone, H. Cao, Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108(18), 186805 (2012)

  28. 28.

    Y. Chong, L. Ge, H. Cao, A. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105(5), 053901 (2010)

  29. 29.

    W. Wan, Y. Chong, L. Ge, H. Noh, A. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331(6019), 889–892 (2011)

  30. 30.

    Z. Wong, X. Jing, Y. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, X. Zhang, Lasing and antilasing in a single cavity. Nat. Photonics 10(12), 796 (2016)

  31. 31.

    Y. Chong, L. Ge, A. Stone, P t-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106(9), 093902 (2011)

  32. 32.

    S.M. Rao, J.J.F. Heitz, T. Roger, N. Westerberg, D. Faccio, Coherent control of light interaction with graphene. Opt. Lett. 39(18), 5345–5347 (2014)

  33. 33.

    R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)

  34. 34.

    K. Ahn, F. Rotermund, Terahertz optical bistability of graphene in thin layers of dielectrics. Opt. Express 25(8), 8484–8490 (2017)

Download references

Author information

Correspondence to Tayebeh Naseri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naseri, T., Balaei, M. Tunable coherent perfect absorption via an asymmetric graphene-based structure. Eur. Phys. J. Plus 135, 102 (2020).

Download citation