Advertisement

Impacts of hematite, bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles

  • Asmaa A. H. El-Bassuony
  • H. K. AbdelsalamEmail author
Regular Article
  • 20 Downloads

Abstract

Nanometric silver nanoparticles AgNPs, accompanied by different impurities hematite, bunsenite and maghemite, were synthesized using a rapid and a facile combustion technique. A single-phase cubic spinel structure was obtained from X-ray diffraction analyses (XRD) for AgNPs accompanied by a small amount of impurities AgNPs–hematite–maghemite (Ag–HM) and AgNPs–hematite–bunsenite–maghemite (Ag–HBM). Resulting from the field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses, the formation of nanoparticle size was clarified with agglomeration. As a result from the magnetic measurements, the saturation magnetization (Ms) of three impurities, accompanied by AgNPs (Ag–HBM), was larger by 6.02-fold than that of two impurities accompanied by AgNPs (Ag–HM). On the contrary, Ag–HM was smaller by 2.6-fold than that of Ag–HBM. During an antimicrobial study, Ag–HBM showed stronger antibacterial activities than that of Ag–HM. Moreover, Ag–HBM showed strong activities against Candida albicans yeast; however, Ag–HM had no activity against the tested fungi. Thus, the dramatic recommendation of Ag–HBM nanoparticles could be used as an effective antibacterial and antifungal nanomaterials.

References

  1. 1.
    R.J.B. Pinto, P.A.A.P. Marques, C.P. Neto, T. Trindade, S. Daina, P. Sadocco, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. 5, 2279–2289 (2009)CrossRefGoogle Scholar
  2. 2.
    A.A. El-Bassuony, Effect of Al addition on structural, magnetic, and antimicrobial properties of Ag nanoparticles for biomedical applications. JOM (2019).  https://doi.org/10.1007/s11837-019-03784-2 CrossRefGoogle Scholar
  3. 3.
    X.Q. Fang, G.X. Bai, Preparation and service performance characterization of Ni/PMN-PT: effect of preparation temperature. J. Alloy. Compd. 735(25), 1131–1136 (2018)CrossRefGoogle Scholar
  4. 4.
    C.S. Zhu, X.Q. Fang, J.X. Liu, H.Y. Li, Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur. J. Mech. A/Sol. 66, 423–432 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A.A. El-Bassuony, Influence of high annealing temperature on structural, magnetic and antimicrobial activity of silver chromite nanoparticles for biomedical applications. J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01306-w CrossRefGoogle Scholar
  6. 6.
    X.Q. Fang, C.S. Zhu, J.X. Liu, Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B Phys. Cond. Matter. 529, 41–56 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. da Silva Paula, C.V. Franco, B.M. Cesar, L. Rodrigues, T. Barichello, G.D. Savi, L.F. Bellato, M.A. Fiori, L. da Silva, Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater. Sci. Eng. 29, 647–650 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Xue, Z. Liu, Y. Su, K. Varahramyan, Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors. Micro-electr. Eng. 83, 298 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, E.J.W. List, Direct inkjet printing of Ag–Cu nanoparticles and Ag precursor based electronics for OFET application. Adv. Funct. Mater. 17, 3111 (2007)CrossRefGoogle Scholar
  10. 10.
    D.K. Petrov, L.K. Eibaum, J.Z. Sun, C. Feild, P.R. Duncombe, Appl. Phys. Lett. 75, 995 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Jiang, J. Yang, C. Nan, Ferroelectrics 489, 60–64 (2015)CrossRefGoogle Scholar
  12. 12.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 13 (2003).  https://doi.org/10.1088/0022-3727/36/13/201 CrossRefGoogle Scholar
  13. 13.
    A.E.A. Mohamed, A.M. Mohamed, A. El-Shafaie, H.F. Mohamed, A.K. Diab, A.M. Ahmed, Effect of NiO impurity on the magneto-transport properties of the La0.7Ba0.3MnO3 granular manganite. Chem. Phys. Lett. 713, 272–276 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. J. Miner. Metals Mater. Soc. (2019).  https://doi.org/10.1007/s11837-019-03415-w CrossRefGoogle Scholar
  15. 15.
    R.W. Cheary, A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25(2), 109–121 (1992)CrossRefGoogle Scholar
  16. 16.
    A.J.C. Wilson, Mathematical Theory of X-ray Powder Diffractometry (Centrex Publishing Company, Eindhoven, 1993)Google Scholar
  17. 17.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), p. 992Google Scholar
  18. 18.
    A.W. Bauer, W.M. Kirby, C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)CrossRefGoogle Scholar
  19. 19.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J. Mater. Sci. Mater. Electron. 29, 11699–11711 (2018).  https://doi.org/10.1007/s10854-018-9268-9 CrossRefGoogle Scholar
  20. 20.
    C.O. Ehi-Eromosele, B.I. Ita, E.E.J. Iweala, Low-temperature combustion synthesis of cobalt magnesium ferrite magnetic nanoparticles: effects of fuel-to-oxidizer ratio and sintering temperature. J. Sol-Gel. Sci. Technol. 76, 298 (2015).  https://doi.org/10.1007/s10971-015-3777-2 CrossRefGoogle Scholar
  21. 21.
    A.A. El-Bassuony, Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. Mater. Electron. 28, 14489–14498 (2017).  https://doi.org/10.1007/s10854-017-7312-9 CrossRefGoogle Scholar
  22. 22.
    H.K. Abdelsalam, Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J. Supercond. Novel. Magn. (2018).  https://doi.org/10.1007/s10948-018-4689-5 CrossRefGoogle Scholar
  23. 23.
    A.A. El-Bassuony, A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-017-4543-1 CrossRefGoogle Scholar
  24. 24.
    M.H. Maklad, N.M. Shash, H.K. Abdelsalam, Structural and magnetic properties of nanograined Ni0.7 yZn0.3 CayFe2O4 spinels structural and magnetic properties of nanograined. Eur. Phys. J. Appl. Phys. 66, 30402 (2014).  https://doi.org/10.1051/epjap/2014130573 CrossRefGoogle Scholar
  25. 25.
    I.N. Leontyev, A.B. Kuriganova, N.G. Leontyev, L. Hennet, A. Rakhmatullin, N.V. Smirnova, V. Dmitriev, Size dependence of the lattice parameter of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv. (2010).  https://doi.org/10.1039/c4ra04809a CrossRefGoogle Scholar
  26. 26.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)ADSCrossRefGoogle Scholar
  27. 27.
    B.K. Labde, M.C. Sable, N.R. Shamkuwar, Structural and infra-red studies of Ni1+ xPbxFe2 2 xO4 system. Mater. Lett. 57(11), 1651–1655 (2003)CrossRefGoogle Scholar
  28. 28.
    X.D. Ma, H.W. Sun, H. He, M.H. Zheng, Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca–Fe composite oxide catalyst. Catal. Lett. 119(1–2), 142–147 (2017)Google Scholar
  29. 29.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726(2017), 1106–1118 (2017).  https://doi.org/10.1016/j.jallcom.2017.08.087 CrossRefGoogle Scholar
  30. 30.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. Mater. Electron. 29, 5401–5412 (2018).  https://doi.org/10.1007/s10854-017-8506-x CrossRefGoogle Scholar
  31. 31.
    C.T. Rueden, J. Schindelin, M.C. Hiner et al., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017).  https://doi.org/10.1186/s12859-017-1934-z CrossRefGoogle Scholar
  32. 32.
    P. Magudapatty, P. Gangopadhyayrans, B.K. Panigrahi, K.G.M. Nair, S. Dhara, Phys. B 299, 142 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J. Supercond. Nov. Magn. 31, 1539–1544 (2018).  https://doi.org/10.1007/s10948-017-4340-x CrossRefGoogle Scholar
  34. 34.
    A.M. Prodan, S.L. Iconaru, C.M. Chifiriuc, C. Bleotu, C.S. Ciobanu, M.M. Heino, S. Sizaret, D. Predoi, Magnetic properties and biological activity evaluation of iron oxide nanoparticles. J. Nanomater. 2013, 893970 (2013).  https://doi.org/10.1155/2013/893970 CrossRefGoogle Scholar
  35. 35.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Correlation of heat treatment and the impurities accompanying Ag nanoparticles. Eur. Phys. J. Plus. (2020).  https://doi.org/10.1140/epjp/s13360-019-00025-y CrossRefGoogle Scholar
  36. 36.
    A.A.H. El-Bassuony, Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. Mater. Electron. 29, 3259–3269 (2018).  https://doi.org/10.1007/s10854-017-8261-z CrossRefGoogle Scholar
  37. 37.
    P.T. Barton, R. Seshadri, A. Knoller, M.J. Rosseinsky, Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1 x (CuCrO2)x. J. Phys. Condens. Matter 24, 16002 (2012).  https://doi.org/10.1088/0953-8984/24/1/016002 CrossRefGoogle Scholar
  38. 38.
    T.K. Rao, C.J. Rao, I.V.K. Viswanath, Y.L.N. Murthy, Anti microbial activity of nanosilverferrite composite. IJIRSET (2015).  https://doi.org/10.15680/IJIRSET.2015.0409092 CrossRefGoogle Scholar
  39. 39.
    M. Faried, K. Shameli, M. Miyake, A. Hajalilou, A. Zamanian, Z. Zakaria, E. Abouzari-lotf, H. Hara, N.B.B.A. Khairudin, M.F.B. Nordin, J. Nanomater. (2016).  https://doi.org/10.1155/2016/4941231 CrossRefGoogle Scholar
  40. 40.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4627-6 CrossRefGoogle Scholar
  41. 41.
    L. Joudah, S. Moghaddas, R.N. Bose, DNA oxidation by peroxo-chromium(v) species: oxidation of guanosine to guani-dinohydantoin. Chem. Commun. 16, 1742–1743 (2002)CrossRefGoogle Scholar
  42. 42.
    P.L. Páez, C.M. Bazán, M.E. Bongiovanni, J. Toneatto, I. Albesa, M.C. Becerra, G.A. Argüello, Oxidative stress and antimicrobial activity of chromium (III) and ruthenium (II) complexes on Staphylococcus aureus and Escherichia coli Hindawi Publishing Corporation. BioMed. Res. Int. (2013).  https://doi.org/10.1155/2013/906912 CrossRefGoogle Scholar
  43. 43.
    A.A.H. El-Bassuony, H.K. Abdelsalam, Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite via high annealing temperature. J. Therm. Anal. Calorim. (2019).  https://doi.org/10.1007/s10973-019-08207-7 CrossRefGoogle Scholar
  44. 44.
    G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz, J. Economy, Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Mater. Lett. 65, 1191–1193 (2011)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Basic Science DepartmentHigher Institute of Applied ArtsNew CairoEgypt
  3. 3.Physics DepartmentHigher Institute of Engineering & Technology, New Cairo AcademyNew CairoEgypt

Personalised recommendations