Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations

Abstract

In this paper, a fractal–fractional mathematical model of convective fluid motion in rotating cavity is investigated inside the ellipsoid with inhomogeneous external heating. The fractal–fractional differential operators namely Caputo, Caputo–Fabrizio and Atangana–Baleanu \({\mathcal{D}}_{\tau }^{{\epsilon }_{1},{\tau }_{1}}\), \({\mathcal{D}}_{\tau }^{{\epsilon }_{2},{\tau }_{2}}\) and \({\mathcal{D}}_{\tau }^{{\epsilon }_{3},{\tau }_{3}}\), respectively, are used in the non-linear mathematical model of convective fluid motion in rotating cavity. The numerical algorithms have been generated in terms of newly presented fractal–fractional differential operators on the basis of Adams–Bashforth method to compute the approximate solutions explicitly. The equilibrium points and stability analysis of the fractal–fractional Atangana–Baleanu, Caputo–Fabrizio and Caputo differential operators in Caputo sense have been investigated for non-linear mathematical model of convective fluid motion in rotating cavity. The numerical solutions are simulated in three types of variations (i) presence of fractional parameter without fractal parameter, (ii) presence of fractal parameter without fractional parameter, and (iii) presence of fractal parameter as well as fractional parameter. The chaotic behavior of convective fluid motion in rotating cavity based on each fractal–fractional differential operator has been highlighted as (a) projection on the x–y plane, (b) projection on the x–z plane, (c) projection on the y–z plane and (d) projection on the \(xyz\) plane in three dimensions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    V.H. Arakeri, A. Acosta, Viscous effects in the inception of cavitation on axisymmetric bodies. Trans. ASME J. Fluids Eng. 95(4), 519–527 (1973)

  2. 2.

    Z. Katz, Cavitation phenomena within regions of flow separation. J. Fluid. Mech. 140, 397–436 (1984)

  3. 3.

    S. Washio, S. Takahashi, Y. Uda, T. Sunahara, Study on cavitation inception in hydraulic oil flow through a long two-dimensional constriction. Proc. Inst. Mech. Eng. Part. J. 215, 373–386 (2001)

  4. 4.

    K.A. Abro, I.A. Abro, A. Yildirim, A comparative analysis of sulfate ion concentration via modern fractional derivatives: an industrial application to cooling system of power plant. Phys A A (2019). https://doi.org/10.1016/j.physa.2019.123306

  5. 5.

    M. Caputo, M.A. Fabrizio, New definition of fractional derivative without singular kernel. Prog. Fract. Diff. Appl. 1, 73–85 (2015)

  6. 6.

    K.A. Abro, J.F. Gómez Aguilar, I. Khan, K.S. Nisar, Role of modern fractional derivatives in an armature-controlled DC servomotor. Eur. Phys. J. Plus 134, 553 (2019). https://doi.org/10.1140/epjp/i2019-12957-6

  7. 7.

    A. Atangana, D. Baleanu, New fractional derivative with non local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

  8. 8.

    K.A. Abro, A. Yildirim, Heat transfer on fractionalized micropolar nanofluid over oscillating plate via Caputo–Fabrizio fractional operator. Sci. Iran. (2019) 10.24200/sci.2019.52437.2717.

  9. 9.

    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006)

  10. 10.

    K.A. Abro, M.N. Mirbhar, J.F. Gomez-Aguilar, Functional application of Fourier sine transform in radiating gas flow with non-singular and non-local kernel. J. Braz. Soc Mech. Sci. Eng. 41, 400 (2019). https://doi.org/10.1007/s40430-019-1899-0

  11. 11.

    R. Hilfer, Applications of fractional calculus in physics (World Scientific Publishing, New York, 2000)

  12. 12.

    K.A. Abro, I. Khan, K.S. Nisar, Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit. Chaos Solitons Fractals 129, 40–45 (2019). https://doi.org/10.1016/j.chaos.2019.08.001

  13. 13.

    A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)

  14. 14.

    A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 123, 320–337 (2019)

  15. 15.

    J.F. Gomez-Aguilar, Chaos and multiple attractors in a fractal-fractional Shinriki’s oscillator model. Phys A A (2019). https://doi.org/10.1016/j.physa.2019.122918

  16. 16.

    D.M. Mugheri, K.A. Abro, M.A. Solangi, Application of modern approach of Caputo-Fabrizio fractional derivative to MHD second grade fluid through oscillating porous plate with heat and mass transfer. Int. J. Adv. Appl. Sci. 5(10), 97–105 (2018)

  17. 17.

    A.A. Kashif, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo–Fabrizio versus Atangana–Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 134, 101 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

  18. 18.

    Q. Sania, A. Abdon, A.S. Asif, Strange chaotic attractors under fractal-fractional operators using newly proposed numerical methods. Eur. Phys. J. Plus 134, 523 (2019). https://doi.org/10.1140/epjp/i2019-13003-7

  19. 19.

    J.F. Gómez-Aguilar, A.A. Kashif, K. Olusola, Y. Ahmet, Chaos in a calcium oscillation model via Atangana–Baleanu operator with strong memory. Eur. Phys. J. Plus 134, 140 (2019). https://doi.org/10.1140/epjp/i2019-12550-1

  20. 20.

    K.A. Abro, K. Ilyas, G.A. José Francisco, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique. J. Braz. Soc. Mech. Sci. Eng. 41, 174–181 (2019). https://doi.org/10.1007/s40430-019-1671-5

  21. 21.

    J.H. He, A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53, 3698–3718 (2014)

  22. 22.

    A.A. Kashif, Y. Ahmet, Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms. Iran. J. Sci. Technol. Trans. A Sci. 43, 1–8 (2019). https://doi.org/10.1007/s40995-019-00687-4

  23. 23.

    H. Cheng, The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension. Int. J. Theor. Phys. 52, 3229–3237 (2013)

  24. 24.

    K.A. Abro, A.M. Ali, A.M. Anwer, Functionality of Circuit via Modern Fractional Differentiations. Analog Integr. Circuits Signal Process 99(1), 11–21 (2019). https://doi.org/10.1007/s10470-018-1371-6

  25. 25.

    R. Kanno, Representation of random walk in fractal space-time. Phys A A 248, 165–175 (1998)

  26. 26.

    A.A. Kashif, K. Ilyas, J.F. Gomez-Aguilar, A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. Eur. Phys. J. Plus 133, 397 (2018). https://doi.org/10.1140/epjp/i2018-12186-7

  27. 27.

    J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings. Math. Methods Appl. Sci. 42(5), 1588–1595 (2019)

  28. 28.

    K. Abro, D.C. Ali, A.A. Irfan, K. Ilyas, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J. Therm. Anal. Calorim. 2018, 1–11 (2018). https://doi.org/10.1007/s10973-018-7302-z

  29. 29.

    A.A. Kashif, A.M. Anwar, A.U. Muhammad, A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur. Phys. J. Plus. 133, 113 (2018). https://doi.org/10.1140/epjp/i2018-11953-8

  30. 30.

    C. Wei, C. Wen, X. Wenxiang, Characterizing the creep of viscoelastic materials by fractal derivative models. Int. J. Non-Linear Mech. 87, 58–63 (2016)

  31. 31.

    T. Ji, K.T. Deng, The flow analysis of fluids in fractal reservoir with the fractional derivative. J. Hydrodyn. Ser. B 18(3), 287–293 (2006)

  32. 32.

    A. Atangana, M.A. Khan, Validity of fractal derivative to capturing chaotic attractors. Chaos Solitons Fractals 126, 50–59 (2019)

  33. 33.

    I.A. Seda, Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators. Chaos Solitons Fractals 130, 109396 (2020)

  34. 34.

    H. Yépez-Martínez, F. Gómez-Aguilar, I.O. Sosa, J.M. Reyes, J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fís. 62(4), 310–316 (2016)

  35. 35.

    J.F. Gómez-Aguilar, H. Yépez-Martínez, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, J.M. Reyes, I.O. Sosa, Series solution for the time-fractional coupled mKdV equation using the homotopy analysis method. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/7047126

  36. 36.

    B. Cuahutenango-Barro, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)

  37. 37.

    F. Gómez, J. Rosales, M. Guía, RLC electrical circuit of non-integer order. Open Phys. 11(10), 1361–1365 (2013)

  38. 38.

    J.F. Gómez-Aguilar, Space–time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys A A 465, 562–572 (2017)

  39. 39.

    K.M. Saad, J.F. Gómez-Aguilar, Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Phys A A 509, 703–716 (2018)

  40. 40.

    J.F. Gómez-Aguilar, D. Baleanu, Fractional transmission line with losses. Z. Naturforschung. A 69(10–11), 539–546 (2014)

  41. 41.

    K.A. Abro, A. Atangana, Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab560c

Download references

Acknowledgements

The authors are highly thankful and grateful to Institute of Ground Water Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa and Mehran university of Engineering and Technology, Jamshoro, Pakistan for generous support and facilities of this research work.

Author information

Correspondence to Kashif Ali Abro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Atangana, A. A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations. Eur. Phys. J. Plus 135, 226 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

Download citation