Advertisement

Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville–Caputo operator

  • 8 Accesses

Abstract

Deterministic models in mathematical epidemiology are important tools to comprehend dynamics of infectious diseases. Theory of ordinary differential equations with first-order derivatives is successfully being used for analysis of such diseases. However, most of the infectious diseases have non-Markovian characteristics and thereby require more sophisticated mathematical tools for modeling purposes. This research study investigates dynamics of measles infection with the help of a mathematical operator called conformable derivative of order \(\alpha \) (the local derivative index) in the sense of Liouville–Caputo operator of order \(\beta \) (the iterated or fractionalizing index). A new measles infection system is proposed that contains a population divided into five different compartments. Bounded solutions of the system exist within positively invariant region and steady-state analysis shows that the disease-free state is locally asymptotically stable when a threshold positive quantity does not exceed 1. The basic reproduction number \({\mathcal {R}}_0\) of the system is computed to be \(2.2674e-02\) under the use of fractional conformable derivative whereas the least and the most sensitive parameters towards \({\mathcal {R}}_0\) have been computed via normalized forward sensitivity indices. Influence of various biological parameters on the system is observed with numerical simulations carried out using Adams–Moulton technique wherein the measles infection is found to be vanishing when \(\alpha \ge 1\) under the fractional conformable derivative which helps to reduce the infection’s burden if either contact rate of infectious individuals with susceptible ones is duly reduced or the newly recruited individuals are given vaccination.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    S. Sheikh et al., Vaccine 29, 18 (2011). https://doi.org/10.1016/j.vaccine.2011.02.087

  2. 2.

    Y. Yanagi, M. Takeda, S. Ohno, J. Gen. Virol. 87, 10 (2006). https://doi.org/10.1099/vir.0.82221-0

  3. 3.

    A.A. Momoh et al., Int. J. Pure Appl. Math. 88, 3 (2013). https://doi.org/10.12732/ijpam.v88i3.6

  4. 4.

    C. Obumneke, I.I. Adamu, S.T. Ado, Int. J. Sci. Technol. 6, 3 (2017)

  5. 5.

    G. Bolarian, Int. J. Math. Trends Technol. 7, 2 (2014)

  6. 6.

    M.O. Fred et al., SIJ Trans. Comput. Sci. Eng. Appl. (CSEA) 2, 3 (2014)

  7. 7.

    M.G. Roberts, M.I. Tobias, Epidemiol. Infect. 124, 2 (2000)

  8. 8.

    S. Edward et al., Appl. Comput. Math. 4, 6 (2015)

  9. 9.

    A. Atangana, B.S.T. Alkahtani, Adv. Mech. Eng. 7, 6 (2015)

  10. 10.

    J.F. Gómez-Aguilar, A. Atangana, V.F. Morales-Delgado, Int. J. Circ. Theor. App. 45, 11 (2017)

  11. 11.

    A. Atangana, B.S.T. Alkahtani, Entropy 17, 6 (2015)

  12. 12.

    A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 10 (2015)

  13. 13.

    A. Atangana, Appl. Math. Comput. 273, 948 (2016)

  14. 14.

    S. Qureshi, A. Yusuf, Chaos Solit. Fractals. 126, 32 (2019)

  15. 15.

    K.M. Saad, A. Atangana, D. Baleanu, Chaos Interdiscip. J. Nonlinear Sci. 28, 6 (2018)

  16. 16.

    A. Atangana, S. Qureshi, Chaos Solit. Fractals 123, 320 (2019)

  17. 17.

    K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 3 (2018)

  18. 18.

    S. Qureshi et al., Physica A Stat. Mech. Appl. 534 (2019). https://doi.org/10.1016/j.physa.2019.122149

  19. 19.

    S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 6 (2018)

  20. 20.

    A. Yusuf et al., Chaos Interdiscip. J. Nonlinear Sci. 28, 12 (2018)

  21. 21.

    S. Ullah et al., Discr. Contain Dynamic Syst. 13, 937 (2019). https://doi.org/10.3934/dcdss.2020055

  22. 22.

    S. Qureshi et al., Chaos Interdiscip. J. Nonlinear Sci. 29, 1 (2019)

  23. 23.

    S. Qureshi, A. Yusuf, Chaos Solit. Fractals 122, 111 (2019). https://doi.org/10.1016/j.chaos.2019.03.020

  24. 24.

    M.A. Khan et al., Eur. Phys. J. Plus 134, 8 (2019)

  25. 25.

    S. Qureshi, A. Yusuf, Eur. Phys. J. Plus 134, 4 (2019)

  26. 26.

    O.A. Arqub, A. El-Ajou, J. King Saud Univ. Sci. 25, 1 (2013)

  27. 27.

    S. Qureshi, A. Atangana, Physica A Stat. Mech. Appl. 526 (2019). https://doi.org/10.1016/j.physa.2019.121127

  28. 28.

    S. Qureshi, E. Bonyah, A.A. Shaikh, Physica A Stat. Mech. Appl. 535 (2019). https://doi.org/10.1016/j.physa.2019.122496

  29. 29.

    R. Khalil et al., J. Comput. Appl. Math. 264, 65 (2014)

  30. 30.

    M. Eslami, H. Rezazadeh, Calcolo 53, 3 (2016)

  31. 31.

    Y. Çenesiz, Wave Random Complex. 27, 1 (2017)

  32. 32.

    T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)

  33. 33.

    A. Atangana, D. Baleanu, A. Alsaedi, Open Math. 13, 1 (2015)

  34. 34.

    T. Abdeljawad, J. Alzabut, F. Jarad, Adv. Differ. Equ. 2017, 1 (2017). https://doi.org/10.1186/s13662-017-1383-z

  35. 35.

    M. Al-Refai, T. Abdeljawad, Complexity 2017 (2017). https://doi.org/10.1155/2017/3720471

  36. 36.

    F. Jarad et al., Adv. Differ. Equ. 2017, 1 (2017). https://doi.org/10.1186/s13662-017-1306-z

  37. 37.

    M.A. Khan, J.F. Gómez-Aguilar, Math. Method Appl. Sci. 42, 7113 (2019). https://doi.org/10.1002/mma.5816

  38. 38.

    T. Abdeljawad, Q.M. Al-Mdallal, F. Jarad, Chaos Solit. Fractals. 119 (2019). https://doi.org/10.1016/j.chaos.2018.12.015

  39. 39.

    Y. Çenesiz, A. Kurt, J. New Theory. 2015, 79 (2015)

  40. 40.

    H.W. Berhe, O.D. Makinde, D.M. Theuri, J. Appl. Math. 2019, 13 (2019). https://doi.org/10.1155/2019/8465747

  41. 41.

    K. Diethelm, N.J. Ford, A.D. Freed, Numer. Algorithms. 36, 31 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

  42. 42.

    C. Li, G. Peng, Chaos Solit. Fractals. 22, 443 (2004). https://doi.org/10.1016/j.chaos.2004.02.013

  43. 43.

    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29, 3 (2002). https://doi.org/10.1023/A:1016592219341

Download references

Acknowledgements

The author is grateful to Mehran University of Engineering and Technology, Jamshoro, Pakistan for the kind support and facilities provided to carry out this research work.

Author information

Correspondence to Sania Qureshi.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qureshi, S. Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville–Caputo operator. Eur. Phys. J. Plus 135, 63 (2020) doi:10.1140/epjp/s13360-020-00133-0

Download citation