Advertisement

The effect of molar ratio on the photo-generated charge activity of ZnO–CdO composites

  • A. Sevik
  • B. Coskun
  • M. SoyluEmail author
Regular Article

Abstract

The molar ratio of ZnO–CdO has an important effect on the photo-induced charge activities of the composite/n-Si structures. Thus, the relationship between the molar ratio of ZnO–CdO and the photo-induced charge generation was revealed in detail. The optical characteristics of thin films obtained by different molar ratio of two semiconductors were studied analytically using absorbance, transmittance, and reflectance measurements. The current–voltage (IV), transient photo-current (It), and transient photo-capacitance (Ct) techniques were used to investigate the photoresponse properties of Al/ZnO–CdO/n–Si/Al diodes. The results reveal that the composites with 5/0, 4/1, and 3/2 molar ratio of ZnO–CdO display the photo-induced charge activity, and the results further manifest that the electronic parameters of the diodes depend on the molar ratio of ZnO–CdO.

References

  1. 1.
    S.I. Radautsan, YuI Maksimov, V.V. Negreskul, S.L. Pyshki, Gallium Phosphides (AN MSSR, Kishinev, 1969). (In Russian) Google Scholar
  2. 2.
    A.A. Bergh, P.J. Dean, Light emitting diodes (Clarendon, Oxford, 1976 (Mir, Moscow, 1987)Google Scholar
  3. 3.
    A. Esmaielzadeh Kandjani, M. Farzalipour Tabriz, O. Mohammad Moradi, H.R. Rezaeian Mehr, S. Ahmadi Kandjani, M.R. Vaezi, J. Alloys Compd. 509, 7854 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Portesia, L. Lolli, E. Taralli, M. Rajteri, E. Monticone, Eur. Phys. J. Plus 130, 45 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Iqbala, A. Mahmood, T.M. Khan, E. Ahmed, Prog. Nat. Sci. 23(1), 64 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Se Kumar, M. Selvakumar, P. Bhagabati, B. Bharathi, S. Karuthapandian, S. Balakumar, RSC Adv. 4, 32977 (2014)CrossRefGoogle Scholar
  7. 7.
    C.V. Reddy, B. Babu, J. Shim, J. Phys. Chem. Solids 112, 20 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Zhang, J. Qin, S. Rajendran, X. Zhang, R. Liu, Chemsuschem 11, 4226 (2018)CrossRefGoogle Scholar
  9. 9.
    C. Yang, Z. Xue, J. Qin, M. Sawangphruk, S. Rajendran, X. Zhang, R. Liu, J. Phys. Chem. C 123, 4795 (2019)CrossRefGoogle Scholar
  10. 10.
    J.N. Jebaranjitham, C. Mageshwari, R. Saravanan, N. Mu, Compos. B 171, 302 (2019)CrossRefGoogle Scholar
  11. 11.
    L.-J. Zhou, C. Li, X. Zou, J. Zhao, P.-P. Jin, L.-L. Feng, M.-H. Fan, G.-D. Li, Sensors Actuators B 197, 370 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 7 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E. Mosquera, I. Pozo, M. Morel, J. Solid State Chem. 206, 265 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K. Senthil, Y. Tak, M. Seol, K. Yong, Nanoscale Res. Lett. 4, 1329 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    G. Li, X. Wang, Y. Wang, X. Shi, N. Yao, B. Zhang, Phys. E 40, 2649 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Karami, Int. J. Electrochem. Sci. 5, 720 (2010)Google Scholar
  17. 17.
    R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125, 277 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Umar, M.S. Akhtar, M.S. Al-Assiri, A.E. Al-Salami, S.H. Kim, Ceram. Int. 44, 5017 (2018)CrossRefGoogle Scholar
  19. 19.
    C. Tan, D. Sun, D. Xu, X. Tian, Y. Huang, Ceram. Int. 42, 10997 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 209, 374 (2015)CrossRefGoogle Scholar
  21. 21.
    S.P. Meshram, J.D. Ambekar, I.S. Mulla, D.P. Amalnerkar, P.V. Adhyapak, J. Nanoeng. Nanomanuf. 4, 127 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Shanmuganathan, I.B. Shameem, S. Krishnan, B. Ranganathan, J. Alloys Compd. 562, 187 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Soylu, O. Savas, Mater. Sci. Semicond. Process. 29, 76 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Li, X. Zhao, W. Fan, J. Phys. Chem. C 115, 3552 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Rahal, B. Boudine, A.R. Khantoul, M. Sebais, O. Halimi, Optik 127, 6943 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    H. Naderi, S. Hajati, M. Ghaedi, J.P. Espinos, Sens. Actuators 297, 1267742 (2019)CrossRefGoogle Scholar
  27. 27.
    R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci 452, 126 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Yanan Yang, Yi Li, Luqiao Yin, Longlong Chen, Jianhua Zhang, Mol. Cryst. Liq. Cryst. 676(1), 72 (2018)CrossRefGoogle Scholar
  29. 29.
    R. Saleh, S.P. Prakoso, A. Fishli, J. Magnetism Magn. Mater. 324, 665 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A. El-Korashy, H. El-Zahed, M. Radwan, Phys. B 334, 75 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A.M. Akyuzlu, F. Dagdelen, A. Gultek, A.A. Hendi, F. Yakuphanoglu, Eur. Phys. J. Plus 132, 178 (2017)CrossRefGoogle Scholar
  32. 32.
    H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    P. Durmus, M. Yıldırım, Mater. Sci. Semiconductor Process. 27, 145 (2014)CrossRefGoogle Scholar
  34. 34.
    Ö.T. Özmen, E. Yaglıoglu, Mater. Sci. Semiconductor Process. 26, 448 (2014)CrossRefGoogle Scholar
  35. 35.
    F. Yakuphanoglu, Microelectron. Eng. 87, 1884 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Altındal, T. Tunç, H. Tecimer, I. Yücedag, Mater. Sci. Semiconductor Process. 28, 48 (2014)CrossRefGoogle Scholar
  37. 37.
    E. Budianu, R. Muller, M. Purica, L. Eftime, R. Skarvelakis, G. Kiriakidis, Thin Solid Films 518, 1057 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    K. Ali, M. Hafezi, Superlattices Microstruct. 54, 1 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    N.K. Hassan, M.R. Hashim, N.K. Allam, Sens. Actuators, A 192, 124 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Kazim, V. Ali, M. Zulfequar, M.M. Haq, M. Husain, Phys. B 393, 310 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    A. Rose, Concepts in photoconductivity (Interscience, New York, 1963)Google Scholar
  42. 42.
    R.K. Gupta, F. Yakuphanoglu, Sol. Energy 86, 1539 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Camaioni, G. Casalbore-Miceli, G. Beggiato, M. Cristani, C. Summonte, Thin Solid Films 366, 211 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wong, NanoLett. 7, 1003 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    R.C.I. MacKenzie, C.G. Shuttle, G.F. Dibb, N. Treat, E. von Hauff et al., J. Phys. Chem. C 117, 12407 (2013)CrossRefGoogle Scholar
  46. 46.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Mater. Chem. A 2, 637 (2014)CrossRefGoogle Scholar
  47. 47.
    S. Duke et al., J. Cryst. Growth 159, 916 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    I. Nurdjaja, E.A. Schiff, Mater. Res. Soc. Symp. Proc. 467, 723 (1997)CrossRefGoogle Scholar
  49. 49.
    A. Vander Ziel, Solid state physical electronics, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1968)Google Scholar
  50. 50.
    U.C. Chung, C. Elissalde, M. Maglione, Appl. Phys. Lett. 92, 042902 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    E.H. Nicollian, J.R. Brews, MOS physics and technology (Wiley, New York, 1982)Google Scholar
  52. 52.
    E.H. Nicollian, J.R. Brews, Bell Syst. Tech. J. 46, 1055 (1976)CrossRefGoogle Scholar
  53. 53.
    R. Castange, A. Vapaille, Surf. Sci. 28(1), 157 (1971)ADSCrossRefGoogle Scholar
  54. 54.
    W.A. Hill, C.C. Coleman, Solid-State Electron 23, 987 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKırklareli UniversityKırklareliTurkey
  2. 2.Department of Physics, Faculty of Sciences and ArtsBingol UniversityBingolTurkey

Personalised recommendations